4.7 Article

Integrated QTL and eQTL Mapping Provides Insights and Candidate Genes for Fatty Acid Composition, Flowering Time, and Growth Traits in a F2 Population of a Novel Synthetic Allopolyploid Brassica napus

Journal

FRONTIERS IN PLANT SCIENCE
Volume 9, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2018.01632

Keywords

Brassica napus; QTL; eQTL; fatty acid; flowering time; growth related traits

Categories

Funding

  1. Korean Institute for Advancement of Technology (KIAT)
  2. Fungi and Plants Corp.
  3. University of California Davis (KIAT Project) [N0001725]
  4. Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET project) [318023-04]

Ask authors/readers for more resources

Brassica napus (B. napus, AACC), is an economically important allotetraploid crop species that resulted from hybridization between two diploid species, Brassica rapa (AA) and Brassica olereacea (CC). We have created one new synthetic B. napus genotype Da-Ae (AACC) and one introgression line Da-Ol-1 (AACC), which were used to generate an F-2 mapping population. Plants in this F-2 mapping population varied in fatty acid content, flowering time, and growth-related traits. Using quantitative trait locus (QTL) mapping, we aimed to determine if Da-Ae and Da-Ol-1 provided novel genetic variation beyond what has already been found in B. napus. Making use of the genotyping information generated from RNA-seq data of these two lines and their F2 mapping population of 166 plants, we constructed a genetic map consisting of 2,021 single nucleotide polymorphism markers that spans 2,929 cM across 19 linkage groups. Besides the known major QTL identified, our high resolution genetic map facilitated the identification of several new QTL contributing to the different fatty acid levels, flowering time, and growth-related trait values. These new QTL probably represent novel genetic variation that existed in our new synthetic B. napus strain. By conducting genome-wide expression variation analysis in our F-2 mapping population, genetic regions that potentially regulate many genes across the genome were revealed. A FLOWERING LOCUS C gene homolog, which was identified as a candidate regulating flowering time and multiple growth-related traits, was found underlying one of these regions. Integrated QTL and expression QTL analyses also helped us identified candidate causative genes associated with various biological traits through expression level change and/or possible protein function modification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available