4.5 Article

Humanized anti-CD123 antibody facilitates NK cell antibody-dependent cell-mediated cytotoxicity (ADCC) of Hodgkin lymphoma targets via ARF6/PLD-1

Journal

BLOOD CANCER JOURNAL
Volume 9, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41408-018-0168-2

Keywords

-

Funding

  1. Saul Highman Translational Research Award
  2. Jesse Rasch Foundation

Ask authors/readers for more resources

CD123 (IL-3R alpha) is frequently expressed by malignant Hodgkin lymphoma (HL) cells. Naked monoclonal antibodies (mAb) against HL lack clinical benefit, partially due to absence of natural killer (NK) cells in the tumor microenvironment. Here we show that the combination of a fully humanized anti-CD123 mAb (CSL362) and high-affinity Fc gamma-receptor NK-92 cells (haNK) effectively target and kill HL cells in vitro. First, we confirmed high expression of CD123 in 2 of the 3 HL cell lines (KM-H2 and L-428), and its absence in NK cells. Cytotoxicity of haNK cells against CD123-positive HL cells was significantly higher in the presence of CSL362. This was also shown with IL-15-activated primary NK cells, although haNK cells showed a 10.87-fold lower estimated half-maximal stimulatory effective concentration (EC50). CSL362 facilitated a significant increase in the expression of CD107a, intracellular IFN-gamma and TNF-alpha and enhanced expression of c-JUN, PLD-1, and ARF6 by NK cells. Inhibition of the ARF6-PLD-1 axis (NAV2729), but not of the MAPK pathway (U0126), completely abrogated CSL362-facilitated antibody-dependent cell-mediated cytotoxicity (ADCC) in haNK and activated primary NK cells. Our results support CD123 as an immunotherapeutic target for HL and the combination of NK cells and CSL362 as a treatment strategy for HL.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available