4.6 Article

Simulating orientation and polarization characteristics of dense fibrous tissue by electrostatic spinning of polymeric fibers

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 10, Issue 2, Pages 571-583

Publisher

Optica Publishing Group
DOI: 10.1364/BOE.10.000571

Keywords

-

Funding

  1. Natural Science Foundation of China [11002139, 81327803]

Ask authors/readers for more resources

Phantoms simulating polarization characteristics of soft tissue play an important role in the development, calibration, and validation of diagnostic polarized imaging devices and of therapeutic strategy, in both laboratory and clinical settings. We propose to fabricate optical phantoms that simulate polarization characteristics of dense fibrous tissues by bonding electrospun polylactic acid (PLA) fibers between polydimethylsiloxane (PDMS) substrate with a groove. Increasing the rotational speed of an electrospinning collector helps improve the orientation of the electrospun fibers. The phantoms simulate the polarization characteristics of dense fibrous tissue of collagenous fibroma and healthy skin with high fidelity. Our experiments demonstrate the technical potential of using such phantoms for validation and calibration of polarimetric medical devices. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available