4.4 Article

Motor Neuron Abnormalities Correlate with Impaired Movement in Zebrafish that Express Mutant Superoxide Dismutase 1

Journal

ZEBRAFISH
Volume 16, Issue 1, Pages 8-14

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/zeb.2018.1588

Keywords

amyotrophic lateral sclerosis; motor neurons; behavioral testing; chemical screening; motor neuron disease

Funding

  1. Office of Pro-Vice-Chancellor, Learning and Teaching, Macquarie University
  2. Snow Foundation of Australia
  3. Macquarie University Safety Net Scheme
  4. NHMRC Dementia Teams Grant [1095215]
  5. NHMRC [1069235, 1146750]
  6. Motor Neuron Disease Research Institute of Australia [MNDRIA GIA 1827]
  7. National Health and Medical Research Council of Australia [1146750, 1095215, 1069235] Funding Source: NHMRC

Ask authors/readers for more resources

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. ALS can be modeled in zebrafish (Danio rerio) through the expression of human ALS-causing genes, such as superoxide dismutase 1 (SOD1). Overexpression of mutated human SOD1 protein causes aberrant branching and shortening of spinal motor axons. Despite this, the functional relevance of this axon morphology remains elusive. Our aim was to determine whether this motor axonopathy is correlated with impaired movement in mutant (MT) SOD1-expressing zebrafish. Transgenic zebrafish embryos that express blue fluorescent protein (mTagBFP) in motor neurons were injected with either wild-type (WT) or MT (A4V) human SOD1 messenger ribonucleic acid (mRNA). At 48 hours post-fertilization, larvae movement (distance traveled during behavioral testing) was examined, followed by quantification of motor axon length. Larvae injected with MT SOD1 mRNA had significantly shorter and more aberrantly branched motor axons (p<0.002) and traveled a significantly shorter distance during behavioral testing (p<0.001) when compared with WT SOD1 and noninjected larvae. Furthermore, there was a positive correlation between distance traveled and motor axon length (R-2=0.357, p<0.001). These data represent the first correlative investigation of motor axonopathies and impaired movement in SOD1-expressing zebrafish, confirming functional relevance and validating movement as a disease phenotype for the testing of disease treatments for ALS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available