4.7 Article

A Hybrid Surrogate Modelling Strategy for Simplification of Detailed Urban Drainage Simulators

Journal

WATER RESOURCES MANAGEMENT
Volume 32, Issue 15, Pages 5241-5256

Publisher

SPRINGER
DOI: 10.1007/s11269-018-2157-4

Keywords

Surrogate model; Model simplification; Emulator; Urban drainage; Combined sewer overflow (CSO)

Funding

  1. European Union's Seventh Framework Programme for research, technological development and demonstration [607000]
  2. EmuMore Project

Ask authors/readers for more resources

Urban drainage modelling typically requires development of highly detailed simulators due to the nature of various underlying surface and drainage processes, which makes them computationally too expensive. Application of such simulators is still challenging in activities such as real-time control (RTC), uncertainty quantification analysis or model calibration in which numerous simulations are required. The focus of this paper is to present a rather simple hybrid surrogate modelling (or emulation) strategy to simplify and accelerate a detailed urban drainage simulator (UDS). The proposed surrogate modelling strategy includes: a) identification of the variables to be emulated; b) development of a simplified conceptual model in which every component contributing to the variables identified in step (a) is replaced by a function; c) definition of these functions, either based on knowledge about the mechanisms of the simulator, or based on the data produced by the simulator; and finally, d) validation of the results produced by the surrogate model in comparison with the original detailed simulator. Herein, a detailed InfoWorks ICM simulator was selected for surrogate modelling. The case study area was a small urban drainage network in Luxembourg. An emulator was developed to map the rainfall time series, as input, to a storage tank volume and combined sewer overflow (CSO) in the case study network. The results showed that the introduced strategy provides a reliable method to simplify the simulator and reduce its run time significantly. For the specific case study, the emulator was approximately 1300 times faster than the original detailed simulator. For quantification of the emulation error, an ensemble of 500 rainfall scenarios with 1month duration was generated by application of a multivariate autoregressive model for conditional simulation of rainfall time series. The results produced by the emulator were compared to the ones produced by the simulator. Finally, as an indicator of the emulation error, distributions of Nash-Sutcliffe efficiency (NSE) between the emulator and simulator results for prediction of storage tank volume and CSO flow time series were presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available