4.6 Article

Voxel segmentation-based 3D building detection algorithm for airborne LIDAR data

Journal

PLOS ONE
Volume 13, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0208996

Keywords

-

Funding

  1. Natural Science Foundation of Liaoning Province of China [20170540419]

Ask authors/readers for more resources

Among traditional Light Detection And Ranging (LIDAR) data representations such as raster grid, triangulated irregular network, point clouds and octree, the explicit 3D nature of voxel-based representation makes it a promising alternative. Despite the benefit of voxel-based representation, voxel-based algorithms have rarely been used for building detection. In this paper, a voxel segmentation-based 3D building detection algorithm is developed for separating building and nonbuilding voxels. The proposed algorithm first voxelizes the LIDAR point cloud into a grayscale voxel structure in which the grayscale of the voxel corresponds to the quantized mean intensity of the LIDAR points within the voxel. The voxelized dataset is segmented into multiple 3D-connected regions depending on the connectivity and grayscale similarity among voxels. The 3D-connected regions corresponding to the building roof and facade are detected sequentially according to characteristics such as their area, density, elevation difference and location. The obtained results for the detected buildings are evaluated by the LIDAR data provided by working group III/4 of ISPRS, which demonstrate a high rate of success. Average completeness, correctness, quality, and kappa coefficient indexes values of 90.0%, 96.0%, 88.1% and 88.7%, respectively, are obtained for buildings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available