4.5 Article

Effects of mass transfer on MHD second grade fluid towards stretching cylinder: A novel perspective of Cattaneo-Christov heat flux model

Journal

PHYSICS LETTERS A
Volume 383, Issue 2-3, Pages 276-281

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physleta.2018.10.035

Keywords

Cattaneo-Christov model; Second grade fluid; MHD; Stretching cylinder; Mass transfer

Ask authors/readers for more resources

The aim of this research is to analyze the effects of mass transfer on second grade fluid flow subjected to the heat transfer incorporated with the relaxation time to reach the state of equilibrium on or after the state of upheaval. A new heat model namely Cattaneo-Christov heat flux comprising the relaxation time is employed instead of very commonly used mundane model based on classical theory of heat flux. Flow is considered towards stretching cylinder in the existence of external magnetic field. Suitable transformations are first used to deduce the momentum, heat and concentration equations and are then solved analytically. The effects of physical quantities such as fluid parameter, magnetic field, Schmidt number, relaxation time, curvature parameter, Prandtl number and chemical reaction on momentum, temperature and concentration profile are examined graphically whereas for validation of results convergence analysis along with residual error are obtained numerically. A comparison of obtained results is also given with the existing literature as a limiting case of reported problem and are found an excellent agreement. The temperature profile indicates thinning effect for higher values of Prandtl number and relaxation time. It is also noted that the velocity increases with increasing values of fluid parameter whereas it declines for the case of magnetic field. This study can be used an application of central heating system and to measure the fast chemical reactions rates. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available