4.8 Article

Effects of combined cryopreservation and decellularization on the biomechanical, structural and biochemical properties of porcine pulmonary heart valves

Journal

ACTA BIOMATERIALIA
Volume 43, Issue -, Pages 71-77

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2016.07.013

Keywords

Cryopreservation; Decellularization; Heart valve; Tissue engineering

Funding

  1. German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) via the Cluster of Excellence 'From regenerative biology to reconstructive therapy' (REBIRTH)
  2. German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) via the C7 project [TRR127]
  3. Engineering and Physical Sciences Research Council [EP/D073618/1] Funding Source: researchfish
  4. EPSRC [EP/D073618/1] Funding Source: UKRI

Ask authors/readers for more resources

Non-fixed, decellularized allogeneic heart valve scaffolds seem to be the best choice for heart valve replacement, their availability, however, is quite limited. Cryopreservation could prolong their shelf-life, allowing for their ideal match to a recipient. In this study, porcine pulmonary valves were decellularized using detergents, either prior or after cryopreservation, and analyzed. Mechanical integrity was analyzed by uniaxial tensile testing, histoarchitecture by histological staining, and composition by DNA, collagen (hydroxyproline) and GAG (chondroitin sulfate) quantification. Residual sodium dodecyl sulfate (SDS) in the scaffold was quantified by applying a methylene blue activation assay (MBAS). Cryopreserved decellularized scaffolds (DC) and scaffolds that were decellularized after cryopreservation (CD) were compared to fresh valves (F), cryopreserved native valves (C), and decellularized only scaffolds (D). The E-modulus and tensile strength of decellularized (D) tissue showed no significant difference compared to DC and CD. The decellularization resulted in an overall reduction of DNA and GAG, with DC containing the lowest amount of GAGs. The DNA content in the valvular wall of the CD group was higher than in the D and DC groups. CD valves showed slightly more residual SDS than DC valves, which might be harmful to recipient cells. In conclusion, cryopreservation after decellularization was shown to be preferable over cryopreservation before decellularization. However, in vivo testing would be necessary to determine whether these differences are significant in biocompatibility or immunogenicity of the scaffolds. Statement of Significance Absence of adverse effects on biomechanical stability of acellular heart valve grafts by cryopreservation, neither before nor after decellularization, allows the identification of best matching patients in a less time pressure dictated process, and therefore to an optimized use of a very limited, but best-suited heart valve prosthesis. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available