4.8 Article

Capsule stiffness regulates the efficiency of pancreatic differentiation of human embryonic stem cells

Journal

ACTA BIOMATERIALIA
Volume 35, Issue -, Pages 153-165

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2016.02.025

Keywords

Human embryonic stem cells; Pancreatic differentiation; Substrate stiffness; Diabetes; Alginate encapsulation

Funding

  1. Center for Complex Engineered Multifunctional Materials (CCEMM), Swanson School of Engineering
  2. NIH [DP2 116520]
  3. Edward R. Weidlein Chair Professorship funds
  4. NSF (United States) [EEC-1156899]

Ask authors/readers for more resources

Encapsulation of donor islets using a hydrogel material is a well-studied strategy for islet transplantation, which protects donor islets from the host immune response. Replacement of donor islets by human embryonic stem cell (hESC) derived islets will also require a means of immune-isolating hESCs by encapsulation. However, a critical consideration of hESC differentiation is the effect of surrounding biophysical environment, in this case capsule biophysical properties, on differentiation. The objective of this study, thus, was to evaluate the effect of capsule properties on growth, viability, and differentiation of encapsulated hESCs throughout pancreatic induction. It was observed that even in the presence of soluble chemical cues for pancreatic induction, substrate properties can significantly modulate pancreatic differentiation, hence necessitating careful tuning of capsule properties. Capsules in the range of 47 kPa supported cell growth and viability, whereas capsules of higher stiffness suppressed cell growth. While an increase in capsule stiffness enhanced differentiation at the intermediate definitive endoderm (DE) stage, increased stiffness strongly suppressed pancreatic progenitor (PP) induction. Signaling pathway analysis indicated an increase in pSMAD/pAKT levels with substrate stiffness likely the cause of enhancement of DE differentiation. In contrast, sonic hedgehog inhibition was more efficient under softer gel conditions, which is necessary for successful PP differentiation. Statement of Significance Cell replacement therapy for type I diabetes (T1D), affecting millions of people worldwide, requires the immunoisolation of insulin-producing islets by encapsulation with a semi-impermeable material. Due to the shortage of donor islets, human pluripotent stem cell (hPSC) derived islets are an attractive alternative. However, properties of the encapsulating substrate are known to influence hPSC cell fate. In this work, we determine the effect of substrate stiffness on growth and pancreatic fate of encapsulated hPSCs. We precisely identify the range of substrate properties conducive for pancreatic cell fate, and also the mechanism by which substrate properties modify the cell signaling pathways and hence cell fate. Such information will be critical in driving regenerative cell therapy for long term treatment of T1D. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available