4.8 Article

Type I interferon/IRF7 axis instigates chemotherapy-induced immunological dormancy in breast cancer

Journal

ONCOGENE
Volume 38, Issue 15, Pages 2814-2829

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41388-018-0624-2

Keywords

-

Funding

  1. Swiss National Science Foundation [31003A_159824]
  2. Swiss Cancer League [KFS-2814-08-2011]
  3. Medic Foundation
  4. Molecular Oncology Program of the National Center of Competence in Research (NCCR)
  5. Swiss National Science Foundation (SNF) [31003A_159824] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Neoadjuvant and adjuvant chemotherapies provide survival benefits to breast cancer patients, in particular in estrogen receptor negative (ER-) cancers, by reducing rates of recurrences. It is assumed that the benefits of (neo)adjuvant chemotherapy are due to the killing of disseminated, residual cancer cells, however, there is no formal evidence for it. Here, we provide experimental evidence that ER- breast cancer cells that survived high-dose Doxorubicin and Methotrexate based chemotherapies elicit a state of immunological dormancy. Hallmark of this dormant phenotype is the sustained activation of the IRF7/IFN-beta/IFNAR axis subsisting beyond chemotherapy treatment. Upregulation of IRF7 in treated cancer cells promoted resistance to chemotherapy, reduced cell growth and induced switching of the response from a myeloid derived suppressor cell-dominated immune response to a CD4(+)/CD8(+) T cell-dependent anti-tumor response. IRF7 silencing in tumor cells or systemic blocking of IFNAR reversed the state of dormancy, while spontaneous escape from dormancy was associated with loss of IFN-beta production. Presence of IFN-beta in the circulation of ER- breast cancer patients treated with neoadjuvant Epirubicin chemotherapy correlated with a significantly longer distant metastasis-free survival. These findings establish chemotherapy-induced immunological dormancy in ER- breast cancer as a novel concept for (neo)adjuvant chemotherapy activity, and implicate sustained activation of the IRF7/IFN-beta/IFNAR pathway in this effect. Further, IFN-beta emerges as a potential predictive biomarker and therapeutic molecule to improve outcome of ER- breast cancer patients treated with (neo)adjuvant chemotherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available