4.8 Article

Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation

Journal

NANO LETTERS
Volume 18, Issue 11, Pages 7400-7406

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.8b03844

Keywords

Optofluidics; optical trapping and manipulation; optical sorting; nanoparticles

Funding

  1. W. M. Keck Foundation Research Program
  2. National Science Foundation [1610271]

Ask authors/readers for more resources

Optical forces have enabled various nanomanipulation in microfluidics such as optical trapping, sorting, and transporting of nanoparticles (NPs), but the manipulation is usually specific with a certain optical field. Tightly focused Gaussian beams can trap NPs but not sort them; moderately focused Gaussian beams allow sorting microparticles in a flow but not NPs; quasi-Bessel beams can sort NPs in a flow but cannot control their positions due to low trapping stiffness. All these methods rely on the axial variation of laser intensity. Here we show that multifunctional and tunable optofluidic potential wells can be created for nanomanipulation by synchronizing optical phase gradient force with fluid drag force. We demonstrate controlled trapping and transporting of 150 nm Ag NPs over 10 mu m and sorting of 80 and 100 nm Au NPs using optical line traps with tunable phase gradients in experiments. Our simulations further predict that simultaneous sorting and trapping of sub-50 nm Au NPs can be achieved with a sorting resolution of 1 nm using optimized optical fields. Our method provides great freedom and flexibility for nanomanipulation in optofluidics with potential applications in nanophotonics and biomedicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available