4.8 Article

A MoS2-Based Capacitive Displacement Sensor for DNA Sequencing

Journal

ACS NANO
Volume 10, Issue 9, Pages 9009-9016

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b05274

Keywords

monolayer molybdenum disulfide; nanoelectromechanical; DNA sequencing; molecular sensing

Ask authors/readers for more resources

We propose an aqueous functionalized molybdenum disulfide nanoribbon suspended over a solid electrode as a capacitive displacement sensor aimed at determining the DNA sequence. The detectable sequencing events arise from the combination of Watson Click base-pairing, one of nature's most basic lock-and-key binding mechanisms, with the ability of appropriately sized atomically thin membranes to flex substantially in response to subnanonewton forces. We employ carefully designed numerical simulations and theoretical estimates to demonstrate excellent (79% to 86%) raw target detection accuracy at similar to 70 million bases per second and electrical measurability of the detected events. In addition, we demonstrate reliable detection of repeated DNA motifs. Finally, we argue that the use of a nanoscale opening (nanopore) is not requisite for the operation of the proposed sensor and present a simplified sensor geometry without the nanopore as part of the sensing element. Our results, therefore, potentially suggest a realistic inherently base-specific, high throughput electronic DNA sequencing device as a cost-effective de novo alternative to the existing methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available