4.6 Article

A mixed virtual element method for the Navier-Stokes equations

Journal

MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES
Volume 28, Issue 14, Pages 2719-2762

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0218202518500598

Keywords

Navier-Stokes problem; pseudostress-based formulation; augmented formulation; mixed virtual element method; high-order approximations

Funding

  1. CONICYT-Chile through the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal [AFB170001]
  2. CONICYT-Chile through the Becas-CONICYT Programme for foreign students
  3. Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion
  4. Universidad Nacional (Costa Rica) [0106-16]

Ask authors/readers for more resources

A mixed virtual element method (mixed-VEM) for a pseudostress-velocity formulation of the two-dimensional Navier-Stokes equations with Dirichlet boundary conditions is proposed and analyzed in this work. More precisely, we employ a dual-mixed approach based on the introduction of a nonlinear pseudostress linking the usual linear one for the Stokes equations and the convective term. in this way, the aforementioned new tensor together with the velocity constitute the only unknowns of the problem, whereas the pressure is computed via a postprocessing formula. In addition, the resulting continuous scheme is augmented with Galerkin type terms arising from the constitutive and equilibrium equations, and the Dirichlet boundary condition, all them multiplied by suitable stabilization parameters, so that the Banach fixed-point and Lax-Milgram theorems are applied to conclude the well-posedness of the continuous and discrete formulations. Next, we describe the main VEM ingredients that are required for our discrete analysis, which, besides projectors commonly utilized for related models, include, as the main novelty, the simultaneous use of virtual element subspaces for H-1 and H(div) in order to approximate the velocity and the pseudostress, respectively. Then, the discrete bilinear and trilinear forms involved, their main properties and the associated mixed virtual scheme are defined, and the corresponding solvability analysis is performed using again appropriate fixed-point arguments. Moreover, Strang-type estimates are applied to derive the a priori error estimates for the two components of the virtual element solution as well as for the fully computable projections of them and the postprocessed pressure. As a consequence, the corresponding rates of convergence are also established. Finally, we follow the same approach employed in previous works by some of the authors and introduce an element-by-element postprocessing formula for the fully computable pseudostress, thus yielding an optimally convergent approximation of this unknown with respect to the broken H(div)-norm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Mathematics, Applied

A mixed virtual element method for a nonlinear Brinkman model of porous media flow

Gabriel N. Gatica, Mauricio Munar, Filander A. Sequeira

CALCOLO (2018)

Article Mathematics, Applied

A posteriori error analysis of a mixed virtual element method for a nonlinear Brinkman model of porous media flow

Mauricio Munar, Filander A. Sequeira

COMPUTERS & MATHEMATICS WITH APPLICATIONS (2020)

Article Mathematics, Applied

Biological modeling with nonlocal advection-diffusion equations

Kevin J. Painter, Thomas Hillen, Jonathan R. Potts

Summary: The use of nonlocal PDE models in describing biological aggregation and movement behavior has gained significant attention. These models capture the self-organizing and spatial sorting characteristics of cell populations and provide insights into how animals perceive and respond to their surroundings. By deriving and analyzing these models, we can better understand biological movement behavior and provide a basis for explaining sociological phenomena.

MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES (2024)

Article Mathematics, Applied

From Herbert A. Simon's legacy to the evolutionary artificial world with heterogeneous collective behaviors

Nicola Bellomo, Massimo Egidi

Summary: This paper focuses on Herbert A. Simon's visionary theory of the Artificial World and proposes a mathematical theory to study the dynamics of organizational learning, highlighting the impact of decomposition and recombination of organizational structures on evolutionary changes.

MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES (2024)

Article Mathematics, Applied

Isogeometric analysis in computation of complex-geometry flow problems with moving boundaries and interfaces

Tayfun E. Tezduyar, Kenji Takizawa, Yuri Bazilevs

Summary: This paper provides an overview of flows with moving boundaries and interfaces (MBI), which include fluid-particle and fluid-structure interactions, multi-fluid flows, and free-surface flows. These problems are frequently encountered in engineering analysis and design, and pose computational challenges that require core computational methods and special methods. The paper focuses on isogeometric analysis, complex geometries, incompressible-flow Space-Time Variational Multiscale (ST-VMS) and Arbitrary Lagrangian-Eulerian VMS (ALE-VMS) methods, and special methods developed in connection with these core methods.

MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES (2024)