4.7 Review

Advances in Polymeric Materials for Electromechanical Devices

Journal

MACROMOLECULAR RAPID COMMUNICATIONS
Volume 40, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/marc.201800521

Keywords

dielectric elastomers; electroactive actuators; ionic polymer metal composites; polymer transducers

Ask authors/readers for more resources

Electroactive polymers (EAP) provide lightweight and cost-effective materials that enable the next generation of electromechanical devices. Commercial polymers have historically dominated research in EAP devices due to their availability. However, several drawbacks of these materials have limited their commercial applications, necessitating new materials for the commercial success of future EAP devices. This review highlights recent advances in novel EAPs for ionic polymer-metal composites (IPMC) and dielectric elastomer actuators (DEA). Ion-containing block copolymers and charged segmented condensation polymers demonstrate suitable electromechanical properties competitive with Nafion-based IPMCs. In addition, swelling ionic polymer membranes with free ionic liquid enhances ionic conductivity and promotes electromechanical actuation. Synthetic approaches to increasing permittivity in dielectric elastomers are also explored as a method of producing more efficient DEAs. Incorporating polar functional groups into siloxane and acrylic elastomers through grafting or blending provides high-dielectric elastomers for use in DEAs with low driving voltages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available