4.8 Article

Controlled Growth of Nanostructured Biotemplates with Cobalt and Nitrogen Codoping as a Binderless Lithium-Ion Battery Anode

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 40, Pages 26868-26877

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b09300

Keywords

filamentous fungi; biotemplate; cobalt; nitrate; lithium

Funding

  1. ONR NURP program

Ask authors/readers for more resources

Biomass can serve as a sustainable template for the synthesis of carbon materials but is limited by the intrinsic properties of the precursor organism. In this study we demonstrate that the properties of a fungal biotemplate can be tuned during cultivation, establishing a new electrode manufacturing process and ultimately improving the electrochemical performance of the biomass-derived electrode. More specifically, the carbon/nitrogen ratio of Neurospora crassa mycelia mats was shifted by 5-fold while generating cobalt nanoparticles into the hyphal structure originating from macroconidia spores. This shift was achieved through nitrate limitation and equal molar concentrations of Mg2+ and Co2+ in the growth media. The resulting mycelia mat was converted via a high temperature pyrolysis process (800 degrees C) to produce a freestanding cobalt and nitrogen codoped electrode material with no postmodification. Ultimately, nitrogen doping resulted in one of the highest recorded specific reversible capacity for a freestanding biomass-derived lithium-ion anode (400 mAh g(-1) at C/10). We observed an additional improvement in capacity to 425 mAh g(-1) with the incorporation of 3 wt % Co. Our results show how shaping the chemical characteristics of an electrode during the growth of the biotemplate allows for sustainable carbon-based material manufacturing from a living (self-assembled) material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available