4.4 Article

High-Temperature Wear Mechanisms of a Severely Plastic Deformed Al/Mg2Si Composite

Journal

Publisher

ASME
DOI: 10.1115/1.4041764

Keywords

metal matrix composite; severe plastic deformation; high-temperature wear mechanism; adhesive wear; delamination

Ask authors/readers for more resources

The present work was primarily conducted to study the wear behavior of as-received and severely deformed Al-15%Mg2Si in situ composites. The severe plastic deformation was applied using accumulative back extrusion (ABE) technique (one and three passes). The continuous dynamic recrystallization (CDRX) was recognized as the main strain accommodation and grain refinement mechanism within aluminum matrix during ABE cycles. To investigate the wear properties of the processed material, the dry sliding wear tests were carried out on both the as-received and processed samples under normal load of 10 and 20 N at room temperature, 100 degrees C, and 200 degrees C. The results indicated a better wear resistance of processed specimens in comparison to the as-received ones at room temperature. In addition, the wear performance was improved as the ABE pass numbers increased. These were related to the presence of oxide tribolayer. At 100 degrees C, the as-received material exhibited a better wear performance compared to the processed material; this was attributed to the formation of a work-hardened layer on the worn surface. At 200 degrees C, both the as-received and processed composites experienced a severe wear condition. In general, elevating the temperature changed the dominant wear mechanism from oxidation and delamination at room temperature to severe adhesion and plastic deformation at 200 degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available