4.6 Article

Concentration Quenching in Upconversion Nanocrystals

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 122, Issue 45, Pages 26298-26306

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b09371

Keywords

-

Funding

  1. China Scholarship Council [201506380101]

Ask authors/readers for more resources

Despite considerable effort to improve upconversion (UC) in lanthanide-doped nanocrystals (NCs), the maximum reported efficiencies remain below 10%. Recently, we reported on low Er3+- and Yb3+-doped NaYF4 NCs giving insight into fundamental processes involved in quenching for isolated ions. In practice, high dopant concentrations are required and there is a trend toward bright UC in highly doped NCs. Here, additional quenching processes due to energy transfer and migration add to a reduction in UC efficiency. However, a fundamental understanding on how concentration quenching affects the quantum efficiency is lacking. Here, we report a systematic investigation on concentration-dependent decay dynamics for Er3+ or Yb3+ doped at various concentrations (1-100%) in core and core-shell NaYF4 NCs. The qualitative and quantitative analyses of luminescence decay curves and emission spectra show strong concentration quenching for the green emitting Er3+ S-4(3/2) and NIR-emitting I-4(11/2) levels, whereas concentration quenching for the red-emitting F-4(9/2) level and the IR-emitting I-4(13/2) level is limited. The NIR emission of Yb3+ remains efficient even at concentration as high as 60% Yb3+, especially in core-shell NCs. Finally, the role of solvent quenching was investigated and reveals a much stronger quenching in aqueous media that can be explained by the high-energy O-H vibrations. The present study uncovers a more complete picture of quenching processes in highly doped UC NCs and serves to identify methods to further optimize the efficiency by careful tuning of lanthanide concentrations and core-shell design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available