4.6 Article Proceedings Paper

Convolutional Neural Network-Based Optical Performance Monitoring for Optical Transport Networks

Journal

JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING
Volume 11, Issue 1, Pages A52-A59

Publisher

Optica Publishing Group
DOI: 10.1364/JOCN.11.000A52

Keywords

Digital coherent reception; Machine learning; Optical fiber communication; Optical performance monitoring

Ask authors/readers for more resources

To address the open and diverse situation of future optical networks, it is necessary to find a methodology to accurately estimate the value of a target quantity in an optical performance monitor (OPM) depending on the high-level monitoring objectives declared by the network operator. Using machine learning techniques partially enables a trainable OPM; however, it still requires the feature selection before the learning process. Here, we show the OPM that uses a convolutional neural network (CNN) with a digital coherent receiver to deal with the abundance of training data required for convergence and pre-processing of input data by human engineers needed for feature (representation) extraction. To proof a concept of the OPM based on CNN, we experimentally demonstrate that a CNN can learn an accurate optical signal-to-noise-ratio (OSNR) estimation functionality from asynchronously sampled data right after intradyne coherent detection. We evaluate bias errors and standard deviations of a CNN-based OSNR estimator for six combinations of modulation formats and symbol rates and confirm that the proposed OSNR estimator can provide accurate estimation results (<0.4 dB bias errors and standard deviations). Additionally, we investigate filters in the trained CNN to reveal what the CNN learned in the training phase. This is a valuable step toward designing autonomous self-driving optical networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available