4.4 Article

Combination of Insulin with a GLP1 Agonist Is Associated with Better Memory and Normal Expression of Insulin Receptor Pathway Genes in a Mouse Model of Alzheimer's Disease

Journal

JOURNAL OF MOLECULAR NEUROSCIENCE
Volume 67, Issue 4, Pages 504-510

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12031-019-1257-9

Keywords

Insulin; Exenatide; Alzheimer's disease; T2D

Funding

  1. NIH [R01 AG034087, R01 AG051545]
  2. VA Merit grant [1I01BX002267]
  3. Leroy Schecter Foundation
  4. Bader Philanthropies

Ask authors/readers for more resources

Disruption of brain insulin signaling may explain the higher Alzheimer's disease (AD) risk among type 2 diabetic (T2D) patients. There is evidence from in vitro and human postmortem studies that combination of insulin with hypoglycemic medications is neuroprotective and associated with less amyloid aggregation. We examined the effect of 8-month intranasal administration of insulin, exenatide (a GLP-1 agonist), combination therapy (insulin + exenatide) or saline, in wild-type (WT) and an AD-like mouse model (Tg2576). Mice were assessed for learning, gene expression of key mediators and effectors of the insulin receptor signaling pathway (IRSP-IRS1, AKT1, CTNNB1, INSR, IRS2, GSK3B, IGF1R, AKT3), and brain Amyloid Beta (A) levels. In Tg2576 mice, combination therapy reduced expression of IRSP genes which was accompanied by better learning. Cortical A levels were decreased by 15-30% in all groups compared to saline but this difference did not reach statistical significance. WT mice groups, with or without treatment, did not differ in any comparison. Disentangling the mechanisms underlying the potential beneficial effects of combination therapy on the IR pathway and AD-like behavior is warranted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available