4.6 Review

The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes

Journal

JOURNAL OF LIPID RESEARCH
Volume 60, Issue 2, Pages 242-268

Publisher

ELSEVIER
DOI: 10.1194/jlr.R089730

Keywords

lipid signaling; lipid and membrane trafficking; cell signaling; diseases; lipids center dot membranes

Funding

  1. National Institutes of Health [GM44530, GM112591]
  2. Welch Foundation [BE-0017]

Ask authors/readers for more resources

Phosphoinositides are key regulators of a large number of diverse cellular processes that include membrane trafficking, plasma membrane receptor signaling, cell proliferation, and transcription. How a small number of chemically distinct phosphoinositide signals are functionally amplified to exert specific control over such a diverse set of biological outcomes remains incompletely understood. To this end, a novel mechanism is now taking shape, and it involves phosphatidylinositol (PtdIns) transfer proteins (PITPs). The concept that PITPs exert instructive regulation of PtdIns 4-OH kinase activities and thereby channel phosphoinositide production to specific biological outcomes, identifies PITPs as central factors in the diversification of phosphoinositide signaling. There are two evolutionarily distinct families of PITPs: the Sec14-like and the StAR-related lipid transfer domain (START)-like families. Of these two families, the START-like PITPs are the least understood. Herein, we review recent insights into the biochemical, cellular, and physiological function of both PITP families with greater emphasis on the START-like PITPs, and we discuss the underlying mechanisms through which these proteins regulate phosphoinositide signaling and how these actions translate to human health and disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available