4.3 Article

Immune response and differentially expressed proteins in the lung tissue of BALB/c mice challenged by aerosolized Brucella melitensis 5

Journal

JOURNAL OF INTERNATIONAL MEDICAL RESEARCH
Volume 46, Issue 11, Pages 4740-4752

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0300060518799879

Keywords

Aerosol exposure; Brucella melitensis 5; mouse lung tissue; pathological analysis; immunoreactions; proteomic analysis

Ask authors/readers for more resources

Objective This study was performed to develop a murine aerosol infection model of brucellosis to investigate the pathogenicity and immune reactions induced by aerosolized Brucella and to identify key proteins associated with Brucella infection in lung tissue. Methods BALB/c mice were exposed to aerosolized Brucella melitensis 5 (M5) for 30 minutes and killed at 1, 3, 7, and 15 days post-exposure. Clinical observation, pathological analysis of lung tissue, and cytokine expression detection were then performed. Proteomic analysis based on two-dimensional electrophoresis and mass spectrometry was used to identify proteins exhibiting significant changes in expression in lung tissues during Brucella infection. Results Pathological analysis revealed alveolar wall thickening, telangiectasia with hyperemia, inflammatory cell infiltration, large areas of congestion and bleeding, and areas of focal necrosis. The T-helper 1 type immune response played an important role during aerosol infection, and 12 differentially expressed proteins were involved in the infectious process in lung tissue. Conclusion These results contribute to our understanding of the pathogenic process of Brucella in the lung tissue of BALB/c mice challenged with aerosolized Brucella. Some of the identified proteins may be potential targets in future therapeutic strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available