4.2 Article

TiO2/Schwertmannite nanocomposites as superior co-catalysts in heterogeneous photo-Fenton process

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 80, Issue -, Pages 208-217

Publisher

SCIENCE PRESS
DOI: 10.1016/j.jes.2018.12.014

Keywords

Photo-Fenton reaction; Semiconductor; Schwertmannite; Advanced oxidation

Funding

  1. National Natural Science Foundation of China [41572031]
  2. Science and Technology Planning Project of Guangdong Province, China [2017B030314175]
  3. National Program for Support of Top-notch Young Professionals
  4. China scholarship council

Ask authors/readers for more resources

The heterogeneous photo-Fenton reaction is an effective technique in combating organic contaminants for both soil and water remediation, and extensive studies have focused on enhancing its efficiency and reducing its costs. In this work, we developed novel photo-Fenton catalysts by simply milling commercially available TiO2 (P25) with Schwertmannite (Sh), a natural iron-oxyhydroxysulfate nanomineral. We expect that the photo-generated electrons from TiO2 could continuously migrate to Sh, which then could enhance the separation of electron-hole pairs on TiO2 and accelerate the reduction of Fe(III) to Fe(II) on Sh, leading to high degradation efficiency of the target organic contaminants. SEM and TEM results showed the distribution of TiO2 on Sh surface for the nanocomposites (TiO2/Sh). Under simulated sunlight irradiation, the much higher content of Fe(II) was determined on TiO2/Sh than on Sh via a common method in the iron ore, and the consumption of H2O2 and the production of center dot OH were more significant in the TiO2/Sh system than those in the TiO2 and Sh systems. These results well support our hypothesis that the photo-generated electrons could migrate from TiO2 to Sh on the composites, and can also explain the much higher degradation efficiency of Rhodamine B (RhB) in the TiO2/Sh system. Besides, TiO2/Sh had lower Fe dissolution as compared with Sh, and retained high catalytic stability after four repeated cycles. Above merits of the TiO2/Sh composites, in combining with their simple synthesis method and low-cost property, indicated that they should have promising applications as heterogeneous photo-Fenton catalysts. (C) 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available