4.6 Article

A VPS33A-binding motif on syntaxin 17 controls autophagy completion in mammalian cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 294, Issue 11, Pages 4188-4201

Publisher

ELSEVIER
DOI: 10.1074/jbc.RA118.005947

Keywords

autophagy; SNARE proteins; imaging; fluorescence resonance energy transfer (FRET); membrane; syntaxin 17; FLIM-FRET; membrane trafficking; protein degradation; lysosome; phagosome; VPS33A

Funding

  1. Medical Research Council [MR/K01563X/1]
  2. MRC [G0901607, MR/K01563X/1] Funding Source: UKRI

Ask authors/readers for more resources

Autophagy is an intracellular degradation pathway that transports cytoplasmic material to the lysosome for hydrolysis. It is completed by SNARE-mediated fusion of the autophagosome and endolysosome membranes. This process must be carefully regulated to maintain the organization of the membrane system and prevent mistargeted degradation. As yet, models of autophagosomal fusion have not been verified within a cellular context because of difficulties with assessing protein interactions in situ. Here, we used high-resolution fluorescence lifetime imaging (FLIM)-FRET of HeLa cells to identify protein interactions within the spatiotemporal framework of the cell. We show that autophagosomal syntaxin 17 (Stx17) heterotrimerizes with synaptosome-associated protein 29 (SNAP29) and vesicle-associated membrane protein 7 (VAMP7) in situ, highlighting a functional role for VAMP7 in autophagosome clearance that has previously been sidelined in favor of a role for VAMP8. Additionally, we identified multimodal regulation of SNARE assembly by the Sec1/Munc18 (SM) protein VPS33A, mirroring other syntaxin-SM interactions and therefore suggesting a unified model of SM regulation. Contrary to current theoretical models, we found that the Stx17 N-peptide appears to interact in a positionally conserved, but mechanistically divergent manner with VPS33A, providing a late go, no-go step for autophagic fusion via a phosphoserine master-switch. Our findings suggest that Stx17 fusion competency is regulated by a phosphosite in its N-peptide, representing a previously unknown regulatory step in mammalian autophagy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available