4.6 Article

A neutron scattering and electron microscopy study of the structure, wetting, and freezing behavior of water near hydrophilic CuO-nanostructured surfaces

Journal

JOURNAL OF APPLIED PHYSICS
Volume 125, Issue 2, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5060976

Keywords

-

Funding

  1. U.S. National Science Foundation (NSF) [DGE-1069091]
  2. NSF [DMR-1508249]
  3. GO! Internship - Oak Ridge National Laboratory (ORNL)
  4. Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE)
  5. University of Missouri Electron Microscopy Core's Excellence in Microscopy award

Ask authors/readers for more resources

Oscillating heat pipes (OHPs) provide a promising heat transfer device for a variety of applications, including the cooling of electronic devices. Recently, it has been shown that a hydrophilic, nanostructured cupric oxide (CuO) coating can significantly enhance the thermal performance of copper OHPs that use water as the working fluid. Motivated by these results, we report neutron scattering and electron microscopy (EM) measurements to investigate the interaction of water with copper-oxide surfaces on the nanoscale. Our measurements confirm earlier observations of a thin cuprous oxide (Cu2O) layer growing on a bare copper substrate followed by grass-like CuO nanostructures. New evidence of the nanostructure hydrophilicity is provided by EM measurements of wetting and by our high-energy-resolution elastic neutron scattering measurements, showing a continuous freezing and melting of the water in our samples over a temperature range of similar to 80 K. In addition, our neutron diffraction measurements are consistent with water closest to the CuO nanostructures freezing into an amorphous solid at low levels of hydration and hexagonal ice at higher hydration. In short, our findings support a strong interaction of water with the CuO nano structures, which could significantly affect the operation of an OHP. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available