4.7 Article

Plastic strain-induced grain boundary migration (SIBM) in pure aluminum: SEM in-situ and AFM examinations

Journal

INTERNATIONAL JOURNAL OF PLASTICITY
Volume 115, Issue -, Pages 29-55

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2018.11.007

Keywords

Polycrystals; Microstructure evolutions; Grain boundary mobility; SIBM; SEM in-situ heating; AFM analyses

Ask authors/readers for more resources

Plastic strain induced grain boundary migration (SIBM) is investigated by means of in-situ SEM experiments and AFM surface observations in the case of 4N pure aluminum. The study focuses on two polycrystalline samples obtained through different thermo-mechanical treatments that provide different initial (grain size and orientation) microstructures with different evolutions during heating. A total of 77 grain boundaries (GBs) were characterized from both samples. Evaluation of GB displacements was allowed by determining fixed points on initial and final EBSD maps and marks from thermal grooving along GB contours. Some sub-surface final examinations ensured the surface ones being pretty well representative of the bulk behaviour. The GB displacements were related to their geometry and to their initially available migration driving force P, the two main contributions of which were estimated. The boundary curvature contribution P-c is estimated from SEM observations and the so-called stored energy contribution P-Delta rho (that results from the differential of dislocation densities Delta rho across the boundary) is estimated using a crystal plasticity modeling within a homogenization scheme for aggregates validated on slip trace identifications from AFM observations. The resulting driving force P, related to the GB velocity V through the widely used law V = MP is compared with the observed displacement during a finite annealing time. Additional effects as thermal grooving and triple junction pinning or pulling are also discussed from complementary SEM and AFM observations of some typical GBs. Some evidences of GB out-of-plane displacements possibly contributing to the migration process are also commented. The quite extensive set of data regarding grain orientation, GB misorientation and curvature, intracrystalline slip activity and evolution during heating constitutes references for future comparisons with mesoscale simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available