4.6 Article

CAR-T cell therapy in melanoma: A future success story?

Journal

EXPERIMENTAL DERMATOLOGY
Volume 27, Issue 12, Pages 1315-1321

Publisher

WILEY
DOI: 10.1111/exd.13792

Keywords

adoptive T-cell therapy; cancer; checkpoint blockade; immunotherapy; solid tumor

Categories

Ask authors/readers for more resources

Chimeric antigen receptor (CAR)-T cells are one of the impressive recent success stories of anti-cancer immunotherapy. Especially in haematological malignancies, this treatment strategy has shown promising results leading to the recent approval of two CAR-T cell constructs targeting CD19 in the United States and the European Union. After the huge success in haematological cancers, the next step will be the evaluation of its efficacy in different solid tumors, which is currently investigated in preclinical as well as clinical settings. A commonly examined tumor model in the context of immunotherapy is melanoma, since it is known for its immunogenic features. However, the first results of CAR-T cell therapy in solid tumors did not reveal the same impressive outcomes that were observed in haematological malignancies, as engineered cells need to cope with several challenges. Obstacles include the lack of migration of CAR-T cells from blood vessels to the tumor site as well as the immunosuppressive tumor microenvironment within solid tumors. Another hurdle is posed by the identification of an ideal target antigen to avoid on-target/off-tumor toxicities. Regarding immune escape mechanisms, which can be developed by tumor cells to bypass immune recognition, the observation of antigen loss should also be considered. This article gives an overview of the challenges displayed in CAR-T cell therapy for the use in solid tumors and discusses different new strategies and approaches that deal with these problems in order to improve CAR-T cell therapy, particularly for its use in melanoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Dermatology

A deep learning algorithm to detect cutaneous squamous cell carcinoma on frozen sections in Mohs micrographic surgery: A retrospective assessment

Matthew J. Davis, Gokul Srinivasan, Rachael Chacko, Sophie Chen, Anish Suvarna, Louis J. Vaickus, Veronica C. Torres, Sassan Hodge, Eunice Y. Chen, Sarah Preum, Kimberley S. Samkoe, Brock C. Christensen, Matthew R. Leboeuf, Joshua J. Levy

Summary: The development and application of AI algorithms are of great significance for the removal of cSCC, as they can improve operational efficiency and accuracy, especially for moderately and poorly differentiated tumors/ neoplasms. Further improvement is needed to maintain sensitivity to surrounding tissue and determine anatomical positioning.

EXPERIMENTAL DERMATOLOGY (2024)

Article Dermatology

Neurotensin counteracts hair growth inhibition induced by chronic restraint stress

Lingjing Chen, Qing Yu, Feiying Guo, Xuewen Wang, Zhenying Cai, Qiang Zhou

Summary: This study investigated the role and mechanisms of NTS in stress-induced hair growth inhibition. The results demonstrated that NTS effectively counteracted hair growth inhibition caused by stress and regulated the expression of multiple genes related to hair growth at the transcriptional level.

EXPERIMENTAL DERMATOLOGY (2024)