4.3 Article

Vertically integrated dual-continuum models for CO2 injection in fractured geological formations

Journal

COMPUTATIONAL GEOSCIENCES
Volume 23, Issue 2, Pages 273-284

Publisher

SPRINGER
DOI: 10.1007/s10596-018-9805-x

Keywords

Geologic CO2 storage; Fractured rock; Dual-continuum models; Vertically integrated models; Multi-scale modeling

Funding

  1. Carbon Mitigation Initiative at Princeton University
  2. U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) [DE-FE0023323]
  3. DOE/NETL

Ask authors/readers for more resources

Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the large-scale storage of carbon dioxide (CO2) in deep saline aquifers. 3D models solve the governing flow equations in three spatial dimensions to simulate migration of CO2 and brine in the geological formation. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing closed-form integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally much more efficient, but the associated assumptions restrict the applicability of VE models to geological formations with moderate to high permeability. In the present work, we extend the VE models to simulate CO2 storage in fractured deep saline aquifers in the context of dual-continuum modeling, where fractures and rock matrix are treated as porous media continua with different permeability and porosity. The high permeability of fractures makes the VE model appropriate for the fracture domain, thereby leading to a VE dual-continuum model for the dual continua. The transfer of fluid mass between fractures and rock matrix is represented by a mass transfer function connecting the two continua, with a modified transfer function for the VE model based on vertical integration. Comparison of the new model with a 3D dual-continuum model shows that the new model provides comparable numerical results while being much more computationally efficient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available