4.4 Article

Fetal kidney stem cells ameliorate cisplatin induced acute renal failure and promote renal angiogenesis

Journal

WORLD JOURNAL OF STEM CELLS
Volume 7, Issue 4, Pages 776-788

Publisher

BAISHIDENG PUBLISHING GROUP INC
DOI: 10.4252/wjsc.v7.i4.776

Keywords

Fetal kidney stem cells; Mesenchymal and renal progenitor markers; Acute renal failure; Stem cell therapy; Angiogenesis

Funding

  1. Department of Biotechnology, Government of India [BT/PR6519/MED/14/826/2005]

Ask authors/readers for more resources

AIM: To investigate whether fetal kidney stem cells (fKSC) ameliorate cisplatin induced acute renal failure (ARF) in rats and promote renal angiogenesis. METHODS: The fKSC were isolated from rat fetuses of gestation day 16 and expanded in vitro up to 3rd passage. They were characterized for the expression of mesenchymal and renal progenitor markers by flow cytometry and immunocytochemistry, respectively. The in vitro differentiation of fKSC towards epithelial lineage was evaluated by the treatment with specific induction medium and their angiogenic potential by matrigel induced tube formation assay. To study the effect of fKSC in ARF, fKSC labeled with PKH26 were infused in rats with cisplatin induced ARF and, the blood and renal tissues of the rats were collected at different time points. Blood biochemical parameters were studied to evaluate renal function. Renal tissues were evaluated for renal architecture, renal cell proliferation and angiogenesis by immunohistochemistry, renal cell apoptosis by terminal deoxynucleotidyl transferase nick-end labeling assay and early expression of angiogenic molecules viz. vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF)-1 alpha and endothelial nitric oxide synthase (eNOS) by western blot. RESULTS: The fKSC expressed mesenchymal markers viz. CD29, CD44, CD73, CD90 and CD105 as well as renal progenitor markers viz. Wt1, Pax2 and Six2. They exhibited a potential to form CD31 and Von Willebrand factor expressing capillary-like structures and could be differentiated into cytokeratin (CK) 18 and CK19 positive epithelial cells. Administration of fKSC in rats with ARF as compared to administration of saline alone, resulted in a significant improvement in renal function and histology on day 3 (2.33 +/- 0.33 vs 3.50 +/- 0.34, P < 0.05) and on day 7 (0.83 +/- 0.16 vs 2.00 +/- 0.25, P < 0.05). The infused PKH26 labeled fKSC were observed to engraft in damaged renal tubules and showed increased proliferation and reduced apoptosis (P < 0.05) of renal cells. The kidneys of fKSC as compared to saline treated rats had a higher capillary density on day 3 [13.30 +/- 1.54 vs 7.10 +/- 1.29, capillaries/high-power fields (HPF), P < 0.05], and on day 7 (21.10 +/- 1.46 vs 15.00 +/- 1.30, capillaries/HPF, P < 0.05). In addition, kidneys of fKSC treated rats had an up-regulation of angiogenic proteins hypoxia-inducible factor-1 alpha, VEGF and eNOS on day 3 (P < 0.05). CONCLUSION: Our study shows that fKSC ameliorate cisplatin induced ARF in rats and promote renal angiogenesis, which may be an important therapeutic mechanism of these stem cells in the disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available