4.6 Article

Iron-Doped Nickel Molybdate with Enhanced Oxygen Evolution Kinetics

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 25, Issue 1, Pages 280-284

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201803844

Keywords

electrocatalysis; Fe doping; NiMoO4; oxygen evolution reaction; water splitting

Funding

  1. Australian Research Council (ARC) DECRA Grant [DE160100596]
  2. AIIM FOR GOLD Grant

Ask authors/readers for more resources

Electrochemical water splitting is one of the potential approaches for making renewable energy production and storage viable. The oxygen evolution reaction (OER), as a sluggish four-electron electrochemical reaction, has to overcome high overpotential to accomplish overall water splitting. Therefore, developing low-cost and highly active OER catalysts is the key for achieving efficient and economical water electrolysis. In this work, Fe-doped NiMoO4 was synthesized and evaluated as the OER catalyst in alkaline medium. Fe3+ doping helps to regulate the electronic structure of Ni centers in NiMoO4, which consequently promotes the catalytic activity of NiMoO4. The overpotential to reach a current density of 10 mA cm(-2) is 299 mV in 1 m KOH for the optimal Ni0.9Fe0.1MoO4, which is 65 mV lower than that for NiMoO4. Further, the catalyst also shows exceptional performance stability during a 2 h chronopotentiometry testing. Moreover, the real catalytically active center of Ni0.9Fe0.1MoO4 is also unraveled based on the ex situ characterizations. These results provide new alternatives for precious-metal-free catalysts for alkaline OER and also expand the Fe-doping-induced synergistic effect towards performance enhancement to new catalyst systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Molecular-Crowding Effect Mimicking Cold-Resistant Plants to Stabilize the Zinc Anode with Wider Service Temperature Range

Huaizheng Ren, Sai Li, Bo Wang, Yanyan Zhang, Tian Wang, Qiang Lv, Xiangyu Zhang, Lei Wang, Xiao Han, Fan Jin, Changyuan Bao, Pengfei Yan, Nan Zhang, Dianlong Wang, Tao Cheng, Huakun Liu, Shixue Dou

Summary: A zwitterionic osmolyte-based molecular crowding electrolyte, achieved by adding betaine to the aqueous electrolyte, is proposed to address the challenges of dendrite growth, low plating/stripping efficiency, and high freezing point in aqueous Zn-ion batteries. The electrolyte effectively restrains side reactions and dendrite growth, enables high reversibility and dendrite-free plating/stripping, and lowers the freezing point for stable operation at low temperatures. This innovative concept injects new vitality into the development of multifunctional aqueous electrolytes.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Atomically Dispersed Dual-Site Cathode with a Record High Sulfur Mass Loading for High-Performance Room-Temperature Sodium-Sulfur Batteries

Bin-Wei Zhang, Liuyue Cao, Cheng Tang, Chunhui Tan, Ningyan Cheng, Wei-Hong Lai, Yun-Xiao Wang, Zhen-Xiang Cheng, Juncai Dong, Yuan Kong, Shi-Xue Dou, Shenlong Zhao

Summary: Room-temperature sodium-sulfur batteries have high potential for energy storage, but issues like low S mass loading and poor cycling stability limit their capacity. This study successfully synthesized sulfur-doped graphene frameworks supporting 2H-MoS2 and Mo-1, leading to a cathode with record-high sulfur mass loading and excellent cycling stability. Experimental and computational results revealed the enhancement mechanisms.

ADVANCED MATERIALS (2023)

Article Nanoscience & Nanotechnology

Piezoresistive Pressure Sensor Based on a Conductive 3D Sponge Network for Motion Sensing and Human-Machine Interface

Wei Cao, Yan Luo, Yiming Dai, Xin Wang, Kaili Wu, Huijuan Lin, Kun Rui, Jixin Zhu

Summary: A simple and cost-effective strategy of constructing a reduced graphene oxide (RGO)wrapped polyurethane (PU) sponge sensor is reported. The flexible sensor exhibits satisfactory sensing performance with high sensitivity, wide compression strain range, and reliable stability. It can be applied to monitor human movements and identify the weight of objects.

ACS APPLIED MATERIALS & INTERFACES (2023)

Review Chemistry, Multidisciplinary

Toward Electrocatalytic Methanol Oxidation Reaction: Longstanding Debates and Emerging Catalysts

Jianmei Wang, Bingxing Zhang, Wei Guo, Lei Wang, Jian Chen, Hongge Pan, Wenping Sun

Summary: The study of direct methanol fuel cells (DMFCs) has been ongoing for around 70 years, but commercialization is still a distant goal. The methanol oxidation reaction (MOR) is the bottleneck reaction that limits the overall performance of DMFCs. This review summarizes the controversies and progress in electrocatalytic mechanisms, performance evaluations, and design science for MOR electrocatalysts. It also provides an overview of the recent development of emerging MOR electrocatalysts, focusing on the innovation of alloy, core-shell structure, heterostructure, and single-atom catalysts. Perspectives on future research directions are also discussed.

ADVANCED MATERIALS (2023)

Article Engineering, Environmental

Enhanced charge transfer and reaction kinetics of vanadium pentoxide for zinc storage via nitrogen interstitial doping

Xuena Xu, Yumin Qian, Chunting Wang, Zhongchao Bai, Chenggang Wang, Ming Song, Yi Du, Xun Xu, Nana Wang, Jian Yang, Yitai Qian, Shixue Dou

Summary: In this study, nitrogen-doped V2O5 is introduced as the cathode material for aqueous zinc-ion batteries. The N-doping improves electronic conductivity and facilitates Zn2+ diffusion by lowering the bandgap energy of V2O5 and changing its diffusion pathway. Furthermore, N-doping enhances the structural stability of the electrode material, leading to excellent electrochemical properties.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Physical

Designing heterostructured FeP-CoP for oxygen evolution reaction: Interface engineering to enhance electrocatalytic performance

Shuang Hou, Ansai Zhang, Qi Zhou, Yingjie Wen, Sixie Zhang, Linfeng Su, Xinjie Huang, Tian Wang, Kun Rui, Cheng Wang, Huiling Liu, Zhiyi Lu, Peilei He

Summary: Developing highly efficient electrocatalysts is crucial for energy conversion systems. Interface engineering, through density functional theory (DFT) calculations, is shown to enhance the electrocatalytic activity. FeP-CoP heterostructures, synthesized through a metal-organic frameworks (MOFs) confined-phosphorization method, exhibit the lowest overpotential for oxygen evolution reaction (OER) and improved long-term stability due to the synergistic effect between FeP and CoP.

NANO RESEARCH (2023)

Article Chemistry, Multidisciplinary

Double design of host and guest synergistically reinforces the Na-ion storage of sulfur cathodes

Xiang Long Huang, Hong Zhong, Ce Li, Yaojie Lei, Shaohui Zhang, Yuhan Wu, Wenli Zhang, Hua Kun Liu, Shi Xue Dou, Zhiming M. Wang

Summary: In this work, a double design host and guest strategy is proposed to enhance the electrochemical properties of sulfur electrodes in sodium ion storage. The V2O3 adsorbent immobilizes sulfur species, while the selenium dopant improves the electronic conductivity and redox conversion of sulfur cathodes. The synergistic effect between the V2O3 adsorbent and selenium dopant inhibits the shuttle effect and improves the redox kinetics, resulting in greatly enhanced Na-ion storage properties of sulfur cathodes. The as-designed sulfur cathode exhibits excellent rate capability of 663 mA h g(-1) at 2.0 A g(-1) and exceptional cyclability of 405 mA h g(-1) over 700 cycles at 1.0 A g(-1).

CHEMICAL SCIENCE (2023)

Article Chemistry, Physical

Intermolecular Cross-Linking Reinforces Polymer Binders for Durable Alloy-Type Anode Materials of Sodium-Ion Batteries

Qian Yao, Yansong Zhu, Cheng Zheng, Nana Wang, Dongdong Wang, Fang Tian, Zhongchao Bai, Jian Yang, Yitai Qian, Shixue Dou

Summary: By molecular engineering of the polymer binders and cross-linking treatment, the mechanical properties and electrochemical stability of sodium-ion batteries can be improved, resulting in extended cycle life and enhanced Coulombic efficiency.

ADVANCED ENERGY MATERIALS (2023)

Review Chemistry, Multidisciplinary

Advanced Anode Materials for Rechargeable Sodium-Ion Batteries

Shuangyan Qiao, Qianwen Zhou, Meng Ma, Hua Kun Liu, Shi Xue Dou, Shaokun Chong

Summary: Rechargeable sodium-ion batteries (SIBs) face challenges in electrode materials due to the large ionic radius of Na-ion. However, progress has been made in intercalation, conversion, alloying, conversion-alloying, and organic anode materials for SIBs. Various optimization strategies have been summarized to improve the electrochemical properties of anodes. The merits, drawbacks, challenges, and future directions for high-performance anode materials are discussed.

ACS NANO (2023)

Review Chemistry, Physical

Recent Progress on Zn Anodes for Advanced Aqueous Zinc-Ion Batteries

Chuanhao Nie, Gulian Wang, Dongdong Wang, Mingyue Wang, Xinran Gao, Zhongchao Bai, Nana Wang, Jian Yang, Zheng Xing, Shixue Dou

Summary: Aqueous Zn-ion batteries have gained significant attention as a promising energy storage candidate due to their safety, cost-effectiveness, and eco-friendliness. However, the cycling stability of Zn metal anodes is a major challenge due to issues such as dendrite growth and hydrogen evolution. Interface engineering strategies, including controllable synthesis of Zn, surface engineering, electrolyte formulation, and separator design, have been developed to address these challenges. This review provides an update on these strategies and discusses future challenges and perspectives for the development of practical AZIBs.

ADVANCED ENERGY MATERIALS (2023)

Article Nanoscience & Nanotechnology

Nanoparticulate ZrNi: In Situ Disproportionation Effectively Enhances Hydrogen Cycling of MgH2

Lingchao Zhang, Xin Zhang, Wenxuan Zhang, Zhenguo Huang, Fang Fang, Juan Li, Limei Yang, Changdong Gu, Wenping Sun, Mingxia Gao, Hongge Pan, Yongfeng Liu

Summary: High thermal stability and sluggish absorption/desorption kinetics are limitations for using MgH2 as a hydrogen storage medium. Introducing a suitable catalyst, such as the novel nanoparticulate ZrNi, can significantly improve the hydrogen storage properties. The catalytic reaction of nano-ZrNi during the first de-/hydrogenation cycle forms active species that enhance the breaking and rebonding of H-H bonds and provide multiple hydrogen diffusion channels, leading to remarkably improved hydrogen absorption and desorption capabilities.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Multidisciplinary Sciences

Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation

Xiaobo Zheng, Jiarui Yang, Peng Li, Qishun Wang, Jiabin Wu, Erhuan Zhang, Shenghua Chen, Zechao Zhuang, Weihong Lai, Shixue Dou, Wenping Sun, Dingsheng Wang, Yadong Li

Summary: In this study, we propose an antioxidation strategy to mitigate anode corrosion by constructing a heterostructured Ir-Sn pair-site catalyst. The formation of Ir-Sn dual-site at the heterointerface and the resulting strong electronic interactions considerably reduce the corrosion of catalysts. The optimized catalyst exhibits high mass activity and outstanding long-term stability.

SCIENCE ADVANCES (2023)

Review Chemistry, Multidisciplinary

Recent progress and strategic perspectives of inorganic solid electrolytes: fundamentals, modifications, and applications in sodium metal batteries

Jiawen Huang, Kuan Wu, Gang Xu, Minghong Wu, Shixue Dou, Chao Wu

Summary: Solid-state electrolytes have been considered as a promising alternative to traditional liquid electrolytes for sodium-metal batteries due to their incombustibility, wider electrochemical stability window, and better thermal stability. However, the development of sodium-ion solid-state electrolytes still remains challenging. This article provides a comprehensive and in-depth inspection of the state-of-the-art sodium-ion solid-state electrolytes, aiming to reveal the underlying sodium ion conduction mechanisms and their compatibility with the sodium metal anode from multiple aspects.

CHEMICAL SOCIETY REVIEWS (2023)

Article Chemistry, Inorganic & Nuclear

Dredging sodium polysulfides using a Fe3C electrocatalyst to realize improved room-temperature Na-S batteries

Xiang Long Huang, Tanveer Hussain, Hanwen Liu, Thanayut Kaewmaraya, Maowen Xu, Hua Kun Liu, Shi Xue Dou, Zhiming Wang

Summary: Carbon nanorods decorated with highly sulfiphilic nanosized cementite are used as an efficient electrocatalyst to overcome the shuttle effect of soluble polysulfides, resulting in improved cyclability and redox kinetics of room-temperature sodium-sulfur batteries.

INORGANIC CHEMISTRY FRONTIERS (2023)

Article Chemistry, Multidisciplinary

A quasi-solid polymer electrolyte initiated by two-dimensional functional nanosheets for stable lithium metal batteries

Ying Zhang, Jiawen Huang, Guanyao Wang, Yuhai Dou, Ding Yuan, Liangxu Lin, Kuan Wu, Hua Kun Liu, Shi-Xue Dou, Chao Wu

Summary: We report a highly safe quasi-solid polymer electrolyte (GPE) for stable cycling of lithium metal with high efficiency. The GPE is prepared by in situ polymerization of 1,3-dioxolane (DOL) with the assistance of multi-functional H3Sb3P2O14 sheets. The GPE exhibits high ionic conductivity and enhanced oxidative stability, improving the electrochemical performance of lithium-metal batteries significantly.

NANOSCALE (2023)

No Data Available