4.6 Article

Coalescence of small bubbles with surfactants

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 196, Issue -, Pages 493-500

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2018.11.002

Keywords

Microbubble; Surfactant; Interface; Simulation; Transport phenomena; Coalescence

Funding

  1. USDA National Institute of Food and Agriculture [2017-05024, 1014964, 1008409, 199888]
  2. Purdue Research Foundation (PRF)

Ask authors/readers for more resources

Bubble coalescence is central to many important technological processes, such as separations, cleaning of oil spills, microfluidics, emulsification and foaming. It is well known that surfactants, which are frequently present as additives or contaminants, delay coalescence by slowing the drainage of the liquid film separating the approaching bubbles before they make contact. However, the coalescence and surfactant transport mechanisms developed after surfactant-laden bubbles make initial contact remain poorly understood. Here, we characterize these mechanisms using high-fidelity numerical simulations to predict the evolution of bubble interfaces, surfactant spreading, and induced Marangoni flows. Our results show that the surfactant initially accumulates on the tiny meniscus bridge formed between the coalescing bubbles due to the rapid and highly localized contraction of meniscus area. At the same time, a Marangoni-driven convective flow is generated at the interface, which drags the accumulated surfactant away from the joining meniscus and toward the back of the bubbles. Together, these transport mechanisms affect the rate bubble coalescence by dynamically modifying the local pull of surface tension on the bubble interfaces. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available