4.7 Article

A novel microfluidic enzyme-organocatalysis combination strategy for ringopening copolymerizations of lactone, lactide and cyclic carbonate

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 356, Issue -, Pages 592-597

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2018.09.033

Keywords

Enzyme catalysis; Organocatalysis; Ring-opening copolymerization; Block copolymer; Microreactor

Funding

  1. National Natural Science Foundation of China, China [21878145, 21504039, 21522604, U1463201]
  2. Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, China [XTD1823, XTD1821, XTB1802]

Ask authors/readers for more resources

A novel microreactor-based enzyme-organocatalysis combination strategy was developed for ring-opening copolymerizations of varied types of cyclic monomers. Commercial Novozyme 435 (N435) and 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD) were chosen as the model enzyme and organocatalyst for evaluating the polymerizations of epsilon-caprolactone (CL), delta-valerolactone (VL), L-lactide (LLA) and trimethylene carbonate (TMC) in the batch and microreactor respectively. Due to the catalytic selectivity, enzymatic polymerization cannot yield block copolymers containing PLA segment and organocatalysis showed poor activity toward CL polymerization. To address these challenges, enzyme and organocatalysis were combined based on microflow technology. In the assembled tandem microreactor system, series of well-defined triblock copolymers, such as PCL-b-PTMC-b-PVL, PCL-b-PTMC-b- PLLA and PTMC-b-PCL-b-PLLA, were efficiently prepared in the flow mode. The convenience of handling the copolymerization conditions and processes, reduced overall reaction time, well-controlled molecular weights and distributions were achieved by employing this microfluidic enzyme-organocatalysis combination strategy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Continuous-Flow Microreactor-Enhanced Clean NAD+ Regeneration for Biosynthesis of 7-Oxo-lithocholic Acid

Hai-Peng Li, Zhi-Neng You, Yuan-Yang Liu, Gao-Wei Zheng, Heng Gong, Yiming Mo, Ning Zhu, Yun-Peng Bai, Jian-He Xu

Summary: The use of a continuous-flow microreactor (CFMR) has significantly improved the efficiency of NAD(+)-dependent chenodeoxycholic acid oxidation, allowing for the production of high value-added chemicals. Compared to traditional batch reactions, the production yield increased by 96-fold, the total turnover number of NAD(+) improved by 10-fold, and enzyme consumption decreased by 7-fold.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2022)

Review Chemistry, Multidisciplinary

Anionic polymerizations in a microreactor

Zhao Jin, Huiyue Wang, Xin Hu, Yihuan Liu, Yujing Hu, Shuangfei Zhao, Ning Zhu, Zheng Fang, Kai Guo

Summary: This review focuses on the impact of microreactor structure on anionic polymerization and its applications in polymer synthesis, providing guidance for flow chemistry and anionic polymerization.

REACTION CHEMISTRY & ENGINEERING (2022)

Article Engineering, Environmental

Microreactor-based chemo-enzymatic ROP-ROMP platform for continuous flow synthesis of bottlebrush polymers

Kerui Chen, Wenjian Han, Xin Hu, Yihuan Liu, Yujing Hu, Shuangfei Zhao, Ning Zhu, Zheng Fang, Kai Guo

Summary: A microreactor-based enzymatic and metal-catalytic cascade reaction platform was developed for the synthesis of bottlebrush polymers. By using a continuous flow chemo-enzymatic strategy, well-defined bottlebrush polymers with fast kinetics and narrow molecular weight distribution were successfully prepared.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Polymer Science

Fully Chemical Recyclable Poly(γ-butyrolactone)-based Copolymers with Tunable Structures and Properties

Yi-Huan Liu, Xin Yuan, Jia-Qi Wu, Ming-Xuan Luo, Xin Hu, Ning Zhu, Kai Guo

Summary: The emerging chemical recyclable polymers provide a solution to plastic pollution, but their structures and properties are limited. In this study, a fully chemical recyclable copolymer P(GBL-co-((R)-M)) was reported, with tunable structures and properties achieved through controlling reaction conditions and catalyst. The copolymer shows potential for sustainable applications.

CHINESE JOURNAL OF POLYMER SCIENCE (2022)

Article Chemistry, Physical

Co-delivery of luteolin and TGF-β1 plasmids with ROS-responsive virus-inspired nanoparticles for microenvironment regulation and chemo-gene therapy of intervertebral disc degeneration

Yifan Ding, Huan Wang, Yunyun Wang, Long Li, Jiahui Ding, Caiyan Yuan, Tao Xu, Haoran Xu, Hui Xie, Ning Zhu, Xin Hu, Huang Fang, Songwei Tan

Summary: This study developed a co-delivery system of luteolin and TGF-beta 1 gene for the treatment of intervertebral disc degeneration (IDD) using a polymer self-assembly technique. The results showed that this co-delivery system could inhibit inflammation, restore the balance of synthesis and catabolism, and delay the progression of IDD.

NANO RESEARCH (2022)

Article Chemistry, Multidisciplinary

Enzymatic kinetic resolution in flow for chiral mandelic acids

Shuzhan Wang, Tingting Shi, Zheng Fang, Chengkou Liu, Wei He, Ning Zhu, Yujing Hu, Xin Li, Kai Guo

Summary: A strategy integrating biotechnology and microtechnology was developed to enhance the optical purity of mandelic acids during kinetic resolution process. The study showed that the method achieved higher optical purity under optimal conditions and improved the kinetics properties.

JOURNAL OF FLOW CHEMISTRY (2022)

Article Electrochemistry

Electrochemical Oxidative ortho-Selective Trifluoromethylation of N-Arylamides

Jinze Du, Di Gao, Dong Zhang, Xinxin Lin, Chengkou Liu, Ning Zhu, Zhao Yang, Wei He, Zheng Fang, Kai Guo

Summary: This article presents a metal-catalyst-free and external-oxidant-free electrochemical oxidative radical C-H ortho-trifluoromethylation. The reaction specifically occurs at the ortho-position of anilides without directing groups. Various anilides show good tolerance and provide the desired products in moderate to good yields. Additionally, the gram-scale amplified product of benzanilide is obtained with a yield of 64%, demonstrating its potential for application.

CHEMELECTROCHEM (2022)

Article Engineering, Environmental

PVDF-based matrix with covalent bonded BaTiO3 nanowires enabled ultrahigh energy density and dielectric properties

Xin Hu, Hui Zhang, Deqi Wu, Dongmei Yin, Ning Zhu, Kai Guo, Chunhua Lu

Summary: In this study, covalently bonded cross-linked inorganic-polymer nanocomposites were designed and prepared. By improving the dispersity of nanofillers in the matrix and forming a network structure, increased dielectric constant, suppressed dielectric loss, and elevated breakdown strength were achieved. The optimal sample exhibited an ultrahigh energy density, providing a potential alternative for the design of high-performance dielectric materials.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Chemical

Design and parametric optimization of a fan-notched baffle structure mixer for enhancement of liquid-liquid two-phase chemical process

Shuangfei Zhao, Yingying Nie, Yimin Wei, Pengjie Yu, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo

Summary: The uniformity of mixing plays a crucial role in liquid-liquid two-phase chemical processes. This study proposes a specific surface area ratio to quantify the uniformity and designs a millimeter-scale mixer with a special baffle structure. By optimizing the baffle parameters, the specific surface area ratio and treatment capacity of the mixer are significantly improved.

INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING (2023)

Article Engineering, Chemical

Improvement of mass and heat transfer efficiency in a scale-up microfluidic mixer designed by CFD simulation

Yingying Nie, Shuangfei Zhao, Pengjie Yu, Yimin Wei, Runze Hu, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo

Summary: Due to scale effects, directly enlarging the size of the micromixer is an easy way to reduce the efficiency of mass and heat transfer in the continuous flow chemical process. A scale-up microfluidic mixer with a porous structure was designed to improve the mass and heat transfer efficiency. The effects of rotation angle, porosity, and baffle spacing were studied to optimize the mixer structure. Compared with the 1 mm mixer without structure, the scale-up mixer has a higher mixing efficiency and an 80% reduction in energy consumption at Re >= 700. The heat transfer efficiency of the mixer during fluid heating was evaluated using a Nusselt number. The results show that the porous baffle promotes the generation of secondary flow and enhances the heat transfer effect, making its Nu increase by three times compared with the unstructured mixer. The scale-up microfluidic mixer with a porous structure effectively improves the mass and heat transfer performance. This study can provide a reference for the design or development of a novel scale-up mixer.

CANADIAN JOURNAL OF CHEMICAL ENGINEERING (2023)

Article Chemistry, Applied

Surface modification of cellulose via photo-induced click reaction

Huan Liang, Dongmei Yin, Lina Shi, Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo

Summary: Functionalized cellulose has gained research interests for its potential in highly functional and environmentally friendly materials. Surface modification of cellulose via photo-induced click reaction integrates the advantages of photochemistry, click reaction, and surface modification. In this review, recent progress in cellulose surface modification using photo-induced click reactions is summarized. Different click reactions, such as thiol-X and cycloaddition reactions, are compared and their applications in cellulose modification are discussed. The challenges and outlook of photo-induced click reaction in cellulose surface modification are also addressed.

CARBOHYDRATE POLYMERS (2023)

Article Engineering, Environmental

Achieving efficient pretreatment of corn straw at elevated temperatures via constraining cellulose degradation

Jiming Yang, Shulin Wang, Fudong Bai, Xingmei Lu, Wei He, Zheng Fang, Ning Zhu, Kai Guo

Summary: Pretreatment of lignocellulose with a binary system consisting of 1-n-butyl-3-methylimidazole chloride (BMIMCl) and arginine (Arg) at temperatures higher than the glass transition temperature of lignin (Tg-lignin) can effectively reduce cellulose crystallinity and lignin content, improving enzymatic hydrolysis efficiency and reducing enzyme dosage.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Thermodynamics

Mass and heat transfer enhancement by a novel mixer with triangular-notched rectangular baffles for continuous flow chemical process

Pengjie Yu, Shuangfei Zhao, Yingying Nie, Yimin Wei, Runze Hu, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo

Summary: This study designed and optimized a novel mixer with triangular-notched rectangular baffles structure, and characterized its performance by combining heat and mass transfer computational fluid dynamics (CFD) method. The results showed that the optimized mixer had a significant increase in mixing efficiency and heat transfer compared to the mixer without baffles structure. Furthermore, the scale-up strategy for continuous flow chemical process enhancement was provided by enlarging the size of the mixer with triangular-notched rectangular baffles structures.

NUMERICAL HEAT TRANSFER PART A-APPLICATIONS (2023)

Article Polymer Science

Regulation of ester contents enabled tunable thermal and mechanical properties of poly(ester amide)

Yihuan Liu, Guoqing Zuo, Han Gao, Zhao Wu, Wei Huang, Canliang Ma, Jie Yin, Xin Hu, Ning Zhu, Kai Guo

Summary: Poly(epsilon-caprolactone-co-epsilon-caprolactam) was successfully synthesized through ring-opening copolymerization and its thermal and mechanical properties were investigated. The results showed that the thermal properties of the polymer varied with the ester content, and the mechanical properties decreased with increasing epsilon-caprolactone incorporation.

POLYMER INTERNATIONAL (2023)

Article Chemistry, Multidisciplinary

Synergistic fluorescent hydrogel actuators with selective spatial shape/color-changing behaviors via interfacial supramolecular assembly

Wei Lu, Ruijia Wang, Muqing Si, Yi Zhang, Shuangshuang Wu, Ning Zhu, Wenqin Wang, Tao Chen

Summary: In this study, robust fluorescent polymeric hydrogel actuators with spatially anisotropic structures were constructed using an interfacial supramolecular assembly (ISA) approach, enabling control over synergistic shape/color-changing behaviors. The proposed ISA approach is universal and expected to open new avenues for developing bioinspired intelligent soft actuators/robotics with selective spatial shape/color-changing behaviors.

SMARTMAT (2023)

Article Engineering, Environmental

A metal-phenolic network-assembled nanotrigger evokes lethal ferroptosis via self-supply loop-based cytotoxic reactions

Xinping Zhang, Yuxin Guo, Xiaoyang Liu, Shun-Yu Wu, Ya-Xuan Zhu, Shao-Zhe Wang, Qiu-Yi Duan, Ke-Fei Xu, Zi-Heng Li, Xiao-Yu Zhu, Guang-Yu Pan, Fu-Gen Wu

Summary: This study develops a nanotrigger HCFT for simultaneous photodynamic therapy and light-triggered ferroptosis therapy. The nanotrigger can relieve tumor hypoxia, induce enhanced photodynamic reaction, and facilitate the continuation of Fenton reaction, ultimately leading to lethal ferroptosis in tumor cells.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

XAS and DFT investigation of atomically dispersed Cu/Co alloyed Pt local structures under selective hydrogenation of acetylene to ethylene

Olumide Bolarinwa Ayodele, Toyin Daniel Shittu, Olayinka S. Togunwa, Dan Yu, Zhen-Yu Tian

Summary: This study focused on the semihydrogenation of acetylene in an ethylene-rich stream using two alloyed Pt catalysts PtCu and PtCo. The PtCu catalyst showed higher activity and ethylene yield compared to PtCo due to its higher unoccupied Pt d-orbital density. This indicates that alloying Pt with Cu is more promising for industrial relevant SHA catalyst.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A multifunctional emitter with synergistical adjustment of rigidity and flexibility for high-performance data-recording and organic light-emitting devices with hot exciton channel

Guowei Chen, Wen-Cheng Chen, Yaozu Su, Ruicheng Wang, Jia-Ming Jin, Hui Liang, Bingxue Tan, Dehua Hu, Shaomin Ji, Hao-Li Zhang, Yanping Huo, Yuguang Ma

Summary: This study proposes an intramolecular dual-locking design for organic luminescent materials, achieving high luminescence efficiency and performance for deep-blue organic light-emitting diodes. The material also exhibits unique mechanochromic luminescence behavior and strong fatigue resistance.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Cobalt/nickel purification by solvent extraction with ionic liquids in millifluidic reactors: From single-channel to numbered-up configuration with solvent recycle

Joren van Stee, Gregory Hermans, Jinu Joseph John, Koen Binnemans, Tom Van Gerven

Summary: This work presents a continuous solvent extraction method for the separation of cobalt and nickel in a millifluidic system using Cyphos IL 101 (C101) as the extractant. The optimal conditions for extraction performance and solvent properties were determined by investigating the effects of channel length, flow rate, and temperature. The performance of a developed manifold structure was compared to a single-channel system, and excellent separation results were achieved. The continuous separation process using the manifold structure resulted in high purity cobalt and nickel products.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Environment-triggered nanoagent with programmed gas release performance for accelerating diabetic infected wound healing

Yan Xu, Jingai Jiang, Xinyi Lv, Hui Li, Dongliang Yang, Wenjun Wang, Yanling Hu, Longcai Liu, Xiaochen Dong, Yu Cai

Summary: A programmed gas release nanoparticle was developed to address the challenges in treating diabetic infected wounds. It effectively removes drug-resistant pathogens and remodels the wound microenvironment using NO and H2S. The nanoparticle can eliminate bacteria and promote wound healing through antibacterial and anti-inflammatory effects.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Synergistic dopa-reinforced fluid hydrosol as highly efficient coal dust suppressant

Tong Xia, Zhilin Xi, Lianquan Suo, Chen Wang

Summary: This study investigated a highly efficient coal dust suppressant with low initial viscosity and high adhesion-solidification properties. The results demonstrated that the dust suppressant formed a network of multiple hydrogen bonding cross-linking and achieved effective adhesion and solidification of coal dust through various chemical reactions.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

First principle-based rate equation theory for the carbonation kinetics of CaO with CO2 in calcium looping

Jinzhi Cai, Zhenshan Li

Summary: A density functional theory-based rate equation was developed to predict the gas-solid reaction kinetics of CaO carbonation with CO2 in calcium looping. The negative activation energy of CaO carbonation close to equilibrium was accurately predicted through experimental validation.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

Jianxiong Chen, Fuhao Ren, Ningning Yin, Jie Mao

Summary: This study presents an economically efficient and easily implementable surface modification approach to enhance the high-temperature electrical insulation and energy storage performance of polymer dielectrics. The self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Medium entropy metal oxide induced *OH species targeted transfer strategy for efficient polyethylene terephthalate plastic recycling

Zijian Li, Zhaohui Yang, Shao Wang, Hongxia Luo, Zhimin Xue, Zhenghui Liu, Tiancheng Mu

Summary: This study reports a strategy for upgrading polyester plastics into value-added chemicals using electrocatalytic methods. By inducing the targeted transfer of *OH species, polyethylene terephthalate was successfully upgraded into potassium diformate with high purity. This work not only develops an excellent electrocatalyst, but also provides guidance for the design of medium entropy metal oxides.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A novel environmental friendly and sustainable process for textile dyeing with sulphur dyes for cleaner production

Navneet Singh Shekhawat, Surendra Kumar Patra, Ashok Kumar Patra, Bamaprasad Bag

Summary: This study primarily focuses on developing a sulphur dyeing process at room temperature using bacterial Lysate, which is environmentally friendly, energy and cost effective, and sustainable. The process shows promising improvements in dye uptake and fastness properties.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Highly efficient and sustainable cationic polyvinyl chloride nanofibrous membranes for removal of E. coli and Cr (VI): Filtration and adsorption

Dengjia Shen, Hongyang Ma, Madani Khan, Benjamin S. Hsiao

Summary: This study developed cationic PVC nanofibrous membranes with high filtration and adsorption capability for the removal of bacteria and hexavalent chromium ions from wastewater. The membranes demonstrated remarkable performance in terms of filtration efficiency and maximum adsorption capacity. Additionally, modified nanofibrous membranes were produced using recycled materials and showed excellent retention rates in dynamic adsorption processes.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Concerted proton-coupled electron transfer promotes NiCoP nanowire arrays for efficient overall water splitting at industrial-level current density

Xiaoyan Wang, Zhikun Wang, Ben Jia, Chunling Li, Shuangqing Sun, Songqing Hu

Summary: Inspired by photosystem II, self-supported Fe-doped NiCoP nanowire arrays modified with carboxylate were constructed to boost industrial-level overall water splitting by employing the concerted proton-coupled electron transfer mechanism. The introduction of Fe and carboxyl ligand led to improved catalytic activity for HER and OER, and NCFCP@NF exhibited long-term durability for overall water splitting.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Self-limiting growth of thin dense LTA membranes boosts H2 gas separation performance

Pengyao Yu, Ge Yang, Yongming Chai, Lubomira Tosheva, Chunzheng Wang, Heqing Jiang, Chenguang Liu, Hailing Guo

Summary: Thin LTA zeolite membranes were prepared through secondary growth of nano LTA seeds in a highly reactive gel, resulting in membranes with superior permeability and selectivity in gas separation applications.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Prediction of phosphate adsorption amount, capacity and kinetics via machine learning: A generally physical-based process and proposed strategy of using descriptive text messages to enrich datasets

Baiqin Zhou, Huiping Li, Ziyu Wang, Hui Huang, Yujun Wang, Ruichun Yang, Ranran Huo, Xiaoyan Xu, Ting Zhou, Xiaochen Dong

Summary: The use of machine learning to predict the performance of specific adsorbents in phosphate adsorption shows great promise in saving time and revealing underlying mechanisms. However, the small size of the dataset and insufficient detailed information limits the model training process and the accuracy of results. To address this, the study employs a fuzzing strategy that replaces detailed numeric information with descriptive text messages on the physiochemical properties of adsorbents. This strategy allows the recovery of discarded samples with limited information, leading to accurate prediction of adsorption amount, capacity, and kinetics. The study also finds that phosphate uptake by adsorbents is generally through physisorption, with some involvement of chemisorption. The framework established in this study provides a practical approach for quickly predicting phosphate adsorption performance in urgent scenarios, using easily accessible information.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Absorption of hydrophobic volatile organic compounds in renewable vegetable oils and esterified fatty acids: Determination of gas-liquid partitioning coefficients as a function of temperature

Paula Alejandra Lamprea Pineda, Joren Bruneel, Kristof Demeestere, Lisa Deraedt, Tex Goetschalckx, Herman Van Langenhove, Christophe Walgraeve

Summary: This study evaluates the use of four esterified fatty acids and three vegetable oils as absorption liquids for hydrophobic VOCs. The experimental results show that isopropyl myristate is the most efficient liquid for absorbing the target VOCs.

CHEMICAL ENGINEERING JOURNAL (2024)