4.7 Article

Light irradiation enhanced CO2 reduction with methane: A case study in size-dependent optical property of Ni nanoparticles

Journal

CATALYSIS TODAY
Volume 335, Issue -, Pages 187-192

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cattod.2018.11.005

Keywords

Localized; Surface plasmon resonance; Interband transition; CO2 photoreduction; Ni nanoparticles; Photocatalysis

Funding

  1. World Premier International Research Center Initiative (WPI Initiative) on Materials Nano-architectonics (MANA), MEXT (Japan)
  2. National Basic Research Program of China (973 Program) [2014CB239301]
  3. National Natural Science Foundation of China [21633004]
  4. Australia Research Council discovery early career researcher award [DE180100523]
  5. Australian Research Council [DE180100523] Funding Source: Australian Research Council

Ask authors/readers for more resources

Ni/Al2O3 catalysts and bulk Ni nanoparticles, with the average sizes of Ni particles varying from 2.7 nm to 238.0 nm, were synthesized and evaluated in CO2 photoreduction with methane (CRM). It was found that the catalytic activities of the Ni-based catalysts were all increased almost linearly with light intensity in the range of 0-1.07 W cm(-2), with the optical properties of Niparticles being regarded to account for the activity enhancement. Wavelength dependent performance study suggested that Ni LSPR dominated for the optical property of smaller Ni nanoparticles whereas interband transition played gradually increased role in improving the activities over larger Ni particles. To the best of our knowledge, it is the first time to study the size-dependent optical properties of Ni nanoparticles, meanwhile, this study offers a foundation to further improve the efficiency of Ni-based catalysts in CO2 utilizations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Nanostructured Materials for Photothermal Carbon Dioxide Hydrogenation: Regulating Solar Utilization and Catalytic Performance

Cuncai Lv, Xianhua Bai, Shangbo Ning, Chenxi Song, Qingqing Guan, Bang Liu, Yaguang Li, Jinhua Ye

Summary: Converting CO2 into fuels or chemicals through photothermal catalysis is a promising solution for energy shortage and global warming. Understanding nanomaterial strategies in this process is crucial for device and catalyst design, as well as maximizing CO2 hydrogenation performance. This Perspective discusses nanomaterial design concepts, reviews recent progress, and highlights challenges and opportunities in photothermal CO2 hydrogenation.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Atomically Dispersed Nickel Anchored on a Nitrogen-Doped Carbon/TiO2 Composite for Efficient and Selective Photocatalytic CH4 Oxidation to Oxygenates

Hui Song, Hengming Huang, Xianguang Meng, Qi Wang, Huilin Hu, Shengyao Wang, Hongwei Zhang, Wipakorn Jewasuwan, Naoki Fukata, Ningdong Feng, Jinhua Ye

Summary: Direct photocatalytic oxidation of methane to liquid oxygenated products at room temperature is achieved using atomically dispersed nickel anchored on a nitrogen-doped carbon/TiO2 composite (Ni-NC/TiO2) catalyst. The Ni-NC/TiO2 catalyst exhibits high activity and selectivity for the formation of Cl oxygenates, with a yield of 198 umol and a selectivity of 93% in 4 hours. The enhanced performance is attributed to the presence of single-atom Ni-NC sites that facilitate electron transfer and activate O2 to form reactive oxygen species.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

Understanding the role of Zn vacancy induced by sulfhydryl coordination for photocatalytic CO2 reduction on ZnIn2S4

Yu Nie, Tingting Bo, Wei Zhou, Huilin Hu, Xiang Huang, Huaiyuan Wang, Xin Tan, Lequan Liu, Jinhua Ye, Tao Yu

Summary: Regulating the energy barrier of *COOH is crucial for the rate determining step in the photocatalytic reduction of CO2 to produce CO gas. In this study, an appropriate Zn vacancy on ZnIn2S4 was synthesized to enhance the photocatalytic CO2 reduction capacity (CO: 5.63 mmol g(-1) h(-1)) and selectivity (CO: 97.9%). Different sulfhydryl groups were used to regulate the formation of Zn vacancies in ZnIn2S4, leading to the generation of unsaturated sulfur coordination state adjacent to the Zn vacancy with fewer electrons compared to ZnIn2S4 without Zn vacancy. Experimental analysis and theoretical calculations demonstrated that the appropriate Zn vacancy shifted the Gibbs free energy of *COOH from endothermic to exothermic during the photoreduction of CO2. This work provides an engineering method to optimize cation vacancies and improve the efficiency of photocatalytic CO2 reduction by adjusting the energy barrier of intermediates.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Nanoscience & Nanotechnology

Synthesis of a Hexagonal Phase ZnS Photocatalyst for High CO Selectivity in CO2 Reduction Reactions

Wuqing Luo, An Li, Baopeng Yang, Hong Pang, Junwei Fu, Gen Chen, Min Liu, Xiaohe Liu, Renzhi Ma, Jinhua Ye, Ning Zhang

Summary: A hexagonal phase ZnS photocatalyst is synthesized and exhibits higher CO selectivity and better activity for CO2 reduction reactions compared to cubic ZnS. The study provides valuable insights into the synthesis and electronic structure of hexagonal ZnS for CO2 reduction reactions, which can inspire the design of highly active photocatalysts.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Mimicking Photosynthesis: A Natural Z-Scheme Photocatalyst Constructed from Red Mud Bauxite Waste for Overall Water Splitting

Xuelian Yu, Jian Xu, Jiangpeng Wang, Jinyu Qiu, Xiaoqiang An, Zhuan Wang, Guocheng Lv, Libing Liao, Jinhua Ye

Summary: In this study, a new protocol of natural Z-Scheme heterostructures based on red mud bauxite waste was demonstrated. The improved component and interfacial structure enabled efficient spatial separation of photo-generated carriers for overall water splitting, making it a promising photocatalyst for solar fuel production. This work presents the first Z-Scheme heterojunction based on natural minerals and provides a new avenue for the utilization of natural minerals for advanced catalysis applications.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

Natural halloysite nanotubes supported Ru as highly active catalyst for photothermal catalytic CO2 reduction

Kang Peng, Jingying Ye, Hongjie Wang, Hui Song, Bowen Deng, Shuang Song, Yihan Wang, Linjie Zuo, Jinhua Ye

Summary: This study demonstrates that Ru nanoparticles supported on natural halloysite nanotubes can enhance the photothermal catalytic activity and selectivity of CO2 methanation under continuous flow conditions. The optimized catalyst exhibits a photothermal catalytic performance of 1704 mmolCH(4) g(cat)(-1) h(-1) with 93% CH4 selectivity and 68% CO2 conversion, surpassing other Ru-based catalysts in photothermal CO2 reduction. The excellent catalytic performance is attributed to the unique mesoporous tubular structure, efficient light-to-heat conversion, and interfacial interactions between halloysite nanotubes and Ru. This method of utilizing natural minerals as support provides a convenient approach for the rational design of abundant and low-cost catalysts for efficient photothermal catalytic CO2 reduction.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Boosting photocatalytic overall water splitting over single-layer graphene coated metal cocatalyst

Xinmin Yang, Jiwei Cui, Xiaolu Liu, Qiqi Zhang, Defa Wang, Jinhua Ye, Lequan Liu

Summary: Cocatalyst is crucial in photocatalytic overall water splitting (POWS), but it also promotes H2-O2 recombination. In this study, a strategic approach of selectively coating single-layer graphene on metal cocatalyst was developed to suppress the backward reaction for efficient POWS. The results demonstrate the effectiveness of this method and its potential in developing cocatalysts with suppressed backward reaction for efficient POWS.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure

Bowen Deng, Hui Song, Qi Wang, Jianan Hong, Shuang Song, Yanwei Zhang, Kang Peng, Hongwei Zhang, Tetsuya Kako, Jinhua Ye

Summary: A Ru/In2O3 catalyst is reported for efficient and stable photothermal CH3OH production from CO2 hydrogenation under atmospheric pressure. The catalyst demonstrates a remarkable solar CH3OH production, which is more than 50 times higher than that of pure In2O3 and surpasses other reported In2O3-based photothermal catalysts. Detailed characterizations show that the interaction between Ru and In2O3 enhances the activation of CO2 and H-2, and Ru modulates the electronic structure of In2O3, promoting the generation of oxygen vacancies for CH3OH formation. This work provides a rational design approach for efficient catalysts in solar CH3OH production from CO2 hydrogenation under mild conditions.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Multidisciplinary Sciences

Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction

Shengyao Wang, Bo Jiang, Joel Henzie, Feiyan Xu, Chengyuan Liu, Xianguang Meng, Sirong Zou, Hui Song, Yang Pan, Hexing Li, Jiaguo Yu, Hao Chen, Jinhua Ye

Summary: Tracking the products of CO2 photoreduction is challenging due to low conversion efficiency and carbon contamination. Isotope-tracing experiments are commonly used but often yield false-positive results. Accurate and effective strategies for evaluating CO2 photoreduction products are needed.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Physical

Polaron-Mediated Transport in BiVO4 Photoanodes for Solar Water Oxidation

Hao Wu, Lei Zhang, Songying Qu, Aijun Du, Junwang Tang, Yun Hau Ng

Summary: Hydrogen dopants and oxygen vacancies are important in BiVO4 photoanodes, but the impact of hydrogenation on charge transport, particularly electron small polaron formation, is not well understood. This study demonstrates that mild hydrogenation of nanoporous BiVO4 reduces the charge transport barrier, as shown by thermally activating photocurrent responses. The hydrogen atoms occupy oxygen vacancies, reducing the activation energy and facilitating electron small polaron transport. A BiVO4 photoanode with NiFeOx cocatalyst achieves an applied-bias photon-to-current efficiency of 1.91% at 0.58 V vs RHE. This study expands the understanding of hydrogen doping beyond conventional donor density/surface chemisorption mediations to include small polaron hopping.

ACS ENERGY LETTERS (2023)

Article Chemistry, Multidisciplinary

Near-Infrared Plasmon-Driven Nitrogen Photofixation Achieved by Assembling Size-Controllable Gold Nanoparticles on TiO2 Nanocavity Arrays

Hao Huang, Shengyao Wang, Xingce Fan, Davin Philo, Liping Fang, Wenguang Tu, Teng Qiu, Zhigang Zou, Jinhua Ye

Summary: Au NPs and TiO2 are integrated via a solid-state dewetting technique, and the plasmonic frequencies range from visible to NIR region. The system allows for the photofixation of N-2 to NH3 under NIR light, offering a carbon-free and sustainable strategy for NH3 production. The Au/TiO2 plasmonic photocatalyst system shows stable performance and has the potential for better utilization of solar energy for nitrogen fixation.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Chemistry, Applied

Selectivity control of photocatalytic CO2 reduction over ZnS-based nanocrystals: A comparison study on the role of ionic cocatalysts

Hong Pang, Fumihiko Ichihara, Xianguang Meng, Lijuan Li, Yuqi Xiao, Wei Zhou, Jinhua Ye

Summary: This study investigates the influence of different transition metal ions on the photocatalytic CO2 reduction using copper-doped ZnS nanocrystals as the main catalyst. It was found that Ni2+, Co2+, and Cd2+ enhanced CO2 reduction, while Fe2+ suppressed the photocatalytic activity. The modified ZnS:Cu photocatalysts demonstrated tunable product selectivity, with Ni2+ and Co2+ showing high selectivity for syngas production and Cd2+ displaying remarkable formate selectivity.

JOURNAL OF ENERGY CHEMISTRY (2023)

Review Chemistry, Multidisciplinary

Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives

Bin Chang, Hong Pang, Fazal Raziq, Sibo Wang, Kuo-Wei Huang, Jinhua Ye, Huabin Zhang

Summary: In this review, the recent progress and challenges in preparing C2+ products are discussed. The recent advancements in carbon-carbon coupling results and proposed mechanisms are elaborated, along with the complex scenarios involved in the initial CO2 activation process, catalyst micro/nanostructure design, and mass transfer conditions optimization. The synergistic realization of high C2+ product selectivity through catalyst design and the influence of electrolytes using theoretical calculation analysis and machine learning prediction are also proposed. The in situ/operando techniques for tracking structural evolution and recording reaction intermediates during electrocatalysis are elaborated, as well as insights into triphasic interfacial reaction systems with improved C2+ selectivity.

ENERGY & ENVIRONMENTAL SCIENCE (2023)

Article Chemistry, Physical

Efficient and Selective Photocatalytic Oxidation of CH4 over Fe Single-Atom-Incorporated MOFs under Visible Light

Chengcheng Zhang, Yingkui Yan, Hubiao Huang, Xinsheng Peng, Hui Song, Jinhua Ye, Li Shi

Summary: Fe@PCN-222 is an efficient and selective photocatalyst that can oxidize CH4 to liquid oxygenates at room temperature using visible light. The presence of Fe single-atoms promotes the transfer of photogenerated electrons and activates H2O2, resulting in a substantial improvement in the selectivity and activity of liquid oxygenate production.

ACS CATALYSIS (2023)

Review Chemistry, Physical

Intermediates and their conversion into highly selective multicarbons in photo/electrocatalytic CO2 reduction reactions

Long Yang, Amol U. Pawar, Ramesh Poonchi Sivasankaran, Donkeun Lee, Jinhua Ye, Yujie Xiong, Zhigang Zou, Yong Zhou, Young Soo Kang

Summary: This review focuses on the identification, conversion, reaction kinetics, pathways, and mechanisms of intermediates, as well as the efficiency and selectivity of multicarbon product formations during photocatalytic and electrocatalytic CO2 reduction. Theoretical simulations and calculations provide deeper insights into this process. Future research directions and inspirations are also included to guide the integration of catalytic systems.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Applied

Operando characterisation of the products of Fischer-Tropsch synthesis in a fixed-bed reactor studied by magnetic resonance

Qingyuan Zheng, Jack H. Williams, Scott Elgersma, Mick D. Mantle, Andrew J. Sederman, G. Leendert Bezemer, Constant M. Guedon, Lynn F. Gladden

Summary: In this study, a pilot-scale fixed-bed reactor compatible with NMR/MRI was developed for Fischer-Tropsch synthesis. Multiple magnetic resonance techniques were applied to quantitatively characterize different product species within catalyst pellets, providing valuable information for catalyst and reactor optimization.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Ambient pressure operando catalytic characterization by combining PM-IRRAS with planar laser-induced fluorescence and surface optical reflectance imaging

Lisa Ramisch, Sebastian Pfaff, Sabrina M. Gericke, Edvin Lundgren, Johan Zetterberg

Summary: We present a combination of optical operando techniques that allow simultaneous measurement of adsorbed species on catalyst surfaces, monitoring of surface oxide formation, and imaging of the gas phase above the catalyst surface. The experimental setup was validated by studying CO oxidation on Pd(100) at different pressures, revealing the effects of pressure on the heterogeneous catalytic reaction.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Insights into the influence of feed impurities on catalytic performance in the solvent-free dimerization of renewable levulinic acid

Marta Paniagua, Gabriel Morales, Juan A. Melero, Daniel Garcia-Salgado

Summary: The influence of common impurities in levulinic acid on the catalytic performance of different acid catalysts for bio-jet fuel production was studied. It was found that furfural had the greatest detrimental effect on catalyst performance, while propyl-sulfonic acid-modified SBA-15 and sulfonic acid resin Amberlyst-70 showed good regeneration ability.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Open Zn-URJC-13 efficient catalyst for mild CO2 transformation using bulky epoxides

Jesus Tapiador, Pedro Leo, Guillermo Calleja, Gisela Orcajo

Summary: This study presents a new MOF material, Zn-URJC-13, with acid and basic sites, permanent porosity, and high affinity to CO2 molecules. The Zn-URJC-13 catalyst exhibits efficient performance in CO2 cycloaddition reactions and can be reused multiple times.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Effect of supports on the kind of in-situ formed ZnOx species and its consequence for non-oxidative propane dehydrogenation

Dan Zhao, Vita A. Kondratenko, Dmitry E. Doronkin, Shanlei Han, Jan-Dierk Grunwaldt, Uwe Rodemerck, David Linke, Evgenii V. Kondratenko

Summary: This study demonstrates the potential of cheap and commercially available Zr or Ti-based supports and ZnO to serve as active and selective catalysts for propane dehydrogenation (PDH). The catalytically active species formed in situ under PDH conditions consist of isolated ZnOx. ZnOx on the surface of LaZrOx shows the highest rate of propene formation.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Diels-Alder conversion of biomass-derived furans and ethylene to renewable aromatics over mesoporous titanium phosphate

Hanbyeol Kim, Jung Rae Kim, Young-Kwon Park, Jeong-Myeong Ha, Jungho Jae

Summary: In this study, metal phosphates were used as catalysts for biomass conversion to produce sustainable aromatics through DielsAlder cycloaddition reactions. The effects of synthesis method, activation method, and P/Ti molar ratio on the structure and acid properties of titanium phosphate catalysts were systematically studied. The mesoporous titanium phosphate catalyst synthesized by hydrothermal method at 180℃ for 12 h followed by ethanol refluxing at 60℃ for 24 h at a molar P/Ti ratio of 1 showed the highest surface area and acid site density.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

High propylene selectivity in methanol conversion over metal (Sm, Y, and Gd) modified HZSM-5 catalysts in the methanol to propylene process

Yasin Khani, Sumin Pyo, Kwang-Eun Jeong, Chul-Ung Kim, Moonis Ali Khan, Byong-Hun Jeon, Kun-Yi Andrew Lin, Siyoung Q. Choi, Young-Kwon Park

Summary: A protonated form of Zeolite Socony Mobil-5 (H-ZSM-5) catalyst was synthesized through a hydrothermal method using different sources of silica. The effect of loading the catalyst with yttrium, samarium, and gadolinium on the acidic properties was investigated. Among the metal-loaded catalysts, the Sm/LHZ catalyst showed the best performance in the methanol to propylene conversion due to its high amount of weak and intermediate acid sites, while the Gd-LHZ catalyst increased the selectivity towards ethane and propane.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Enantioselective synthesis of spiroimidazolones by synergistic catalysis

Michael Franc, Ivana Cisarova, Jan Vesely

Summary: The present study investigates an enantioselective cyclization of enals with imidazolone derivatives catalyzed by a combination of achiral Pd(0) complex and chiral secondary amine. Corresponding spirocyclic imidazolones were produced in high yields with moderate diastereoselectivity and excellent enantioselectivity. The developed co-operative catalytic methodology provides a highly substituted spirocyclic scaffold with four stereogenic centers under mild conditions.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Influence of the synthesis method of Cu/Y zeolite catalysts for the gas phase oxidative carbonylation of methanol to dimethyl carbonate

Mauro Alvarez, Jennifer Cueto, David P. Serrano, Pablo Marin, Salvador Ordonez

Summary: This study focuses on improving the formulation and preparation methods of catalysts for the production of dimethyl carbonate. By using suitable catalyst preparation methods and copper salt precursors, the researchers successfully produced catalysts with optimal performance for dimethyl carbonate formation.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Influence of Ag particle size and Ag : Al2O3 surface ratio in catalysts for the chloride-promoted ethylene epoxidation

Claudia J. Keijzer, Luc C. J. Smulders, Dennie Wezendonk, Jan Willem de Rijk, Petra E. de Jongh

Summary: This study investigates the catalytic behavior of alpha-alumina supported silver catalysts in the presence of chloride. It is found that the particle size of silver can affect the selectivity of the catalyst, but different strategies lead to different results. In this size range, the selectivity of ethylene oxide is correlated to the Ag : Al2O3 surface ratio.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Acid and base catalysis of SrTiO3 nanoparticles for C-C bond-forming reactions

Takeshi Aihara, Wataru Aoki, Michikazu Hara, Keigo Kamata

Summary: The development of acid-base bifunctional catalysts is important for promoting specific chemical transformations. In this study, Ti-based perovskite oxides were synthesized and used as catalysts for two C-C bond-forming reactions (cyanosilylation and Knoevenagel condensation). The highly pure SrTiO3 nanoparticles with a high specific surface area exhibited the highest catalytic performance, and could be easily recovered and reused.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

New Sn-Mg-Al hydrotalcite-based catalysts for Baeyer-Villiger oxidation of β-cyclocitral

Olga Gorlova, Petra Pribylova, Eliska Vyskocilova, Katerina Peroutkova, Jan Kohout, Iva Paterova

Summary: This study investigates the Baeyer-Villiger oxidation of beta-cyclocitral using tin-modified mixed oxides as catalysts. The optimal reaction conditions and the effects of various factors on the reaction course and selectivity were determined. The results show that tin-modified mixed oxides exhibit high activity and selectivity in the oxidation reaction.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Catalytic upgrading of lignin-derived bio-oils over ion-exchanged H-ZSM-5 and H-beta zeolites

M. I. Avila, M. M. Alonso-Doncel, L. Briones, G. Gomez-Pozuelo, J. M. Escola, D. P. Serrano, A. Peral, J. A. Botas

Summary: The catalytic fast pyrolysis of lignin using ion-exchanged zeolite catalysts showed significant improvements in bio-oil quality and the production of aromatic hydrocarbons and oxygenated compounds.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Simultaneous catalytic dehydration of methanol and ethanol: How ZSM-5 acidity addresses conversion and products distribution

Enrico Catizzone, Giorgia Ferrarelli, Paolo Bruno, Girolamo Giordano, Massimo Migliori

Summary: The acid-catalysed alcohol conversion reaction is a promising route for de-fossilization strategies. Research on pure alcohol conversion and simultaneous dehydration of mixed alcohols have shown different product compositions, with the type and distribution of acid sites affecting the reaction mechanism.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Effect of oxygen vacancy modification of ZnO on photocatalytic degradation of methyl orange: A kinetic study

Alireza Ranjbari, Juho Kim, Jihee Yu, Jiyun Kim, Mireu Park, Nayoung Kim, Kristof Demeestere, Philippe M. Heynderickx

Summary: This study investigated a novel kinetic model for the adsorption and photocatalytic degradation of methyl orange using commercial ZnO and reduced ZnO photocatalysts. The results provided new insights into the interaction of catalysts with molecules of different charges and compared with a previous study on methylene blue. The presence of oxygen vacancies in ZnO and their effects on adsorption and photocatalytic degradation were analyzed, and the photocatalytic degradation rate of reduced ZnO was found to increase significantly.

CATALYSIS TODAY (2024)