4.6 Article

The epithelial zinc transporter ZIP10 epigenetically regulates human epidermal homeostasis by modulating histone acetyltransferase activity

Journal

BRITISH JOURNAL OF DERMATOLOGY
Volume 180, Issue 4, Pages 869-880

Publisher

WILEY
DOI: 10.1111/bjd.17339

Keywords

-

Categories

Funding

  1. KAKENHI of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) [17H04011]
  2. Vehicle Racing Commemorative Foundation
  3. Takeda Science Foundation
  4. Life Science Foundation of Japan
  5. Grants-in-Aid for Scientific Research [17H04011] Funding Source: KAKEN

Ask authors/readers for more resources

Background The skin is the first organ that manifests changes in response to zinc deficiency. However, the molecular mechanism underlying how zinc is involved in skin homeostasis, especially its epigenetic regulation, is largely unknown. Objectives In this study we demonstrate the importance of zinc levels and the zinc transporter ZIP10 in the epigenetic maintenance of human epidermal homeostasis. Methods Adult human skin, including skin appendages, were stained with anti-ZIP10 antibody. Histone acetyltransferase (HAT) activity was assessed after treating human keratinocytes with ZIP10 small interfering (si)RNAs or the zinc chelator TPEN. ZIP10- or HAT-regulated genes were analysed based on limma bioinformatics analysis for keratinocytes treated with ZIP10 siRNAs or a HAT inhibitor, or using a public database for transcription factors. A reconstituted human skin model was used to validate the role of ZIP10 in epidermal differentiation and the functional association between ZIP10 and HAT. Results ZIP10 is predominantly expressed in the interfollicular epidermis, epidermal appendages and hair follicles. ZIP10 depletion resulted in epidermal malformations in a reconstituted human skin model via downregulation of the activity of the epigenetic enzyme HAT. This decreased HAT activity, resulting from either ZIP10 depletion or treatment with the zinc chelator TPEN, was readily restored by zinc supplementation. Through bioinformatics analysis for gene sets regulated by knockdown of SLC39A10 (encoding ZIP10) and HAT inhibition, we demonstrated that ZIP10 and HATs were closely linked with the regulation of genes related to epidermal homeostasis, particularly filaggrin and metallothionein. Conclusions Our study suggests that ZIP10-mediated zinc distribution is crucial for epidermal homeostasis via HATs. Therefore, zinc-dependent epigenetic regulation could provide alternatives to maintaining healthy skin or alleviating disorders with skin barrier defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available