4.5 Article

Dual inhibition of Kif15 by oxindole and quinazolinedione chemical probes

Journal

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS
Volume 29, Issue 2, Pages 148-154

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmcl.2018.12.008

Keywords

Kinesin; Mitosis; Oxindole; Kif15; Eg5

Funding

  1. National Institutes of Health [R01GM086610, R50 CA211206]
  2. Leukemia and Lymphoma Society

Ask authors/readers for more resources

The mitotic spindle is a microtubule-based machine that segregates a replicated set of chromosomes during cell division. Many cancer drugs alter or disrupt the microtubules that form the mitotic spindle. Microtubule-dependent molecular motors that function during mitosis are logical alternative mitotic targets for drug development. Eg5 (Kinesin-5) and Kif15 (Kinesin-12), in particular, are an attractive pair of motor proteins, as they work in concert to drive centrosome separation and promote spindle bipolarity. Furthermore, we hypothesize that the clinical failure of Eg5 inhibitors may be (in part) due to compensation by Kif15. In order to test this idea, we screened a small library of kinase inhibitors and identified GW108X, an oxindole that inhibits Kif15 in vitro. We show that GW108X has a distinct mechanism of action compared with a commercially available Kif15 inhibitor, Kif15-IN-1 and may serve as a lead with which to further develop Kif15 inhibitors as clinically relevant agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available