4.7 Article

Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 109, Issue -, Pages 1709-1717

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2018.10.159

Keywords

Circular RNAs; miRNA; Maxillary sinus membrane stem cells; Osteogenic differentiation

Funding

  1. National Natural Science Foundation of China [81371111, 81360172]
  2. Natural Science Foundation of Guangdong Province [2018A030313173]
  3. Medical Science and Technology Research Foundation of Guangdong Province [A20180419]
  4. Joint Fund for Applied Basic Research of the Yunnan Provincial Science and Technology Department of Kunming Medical School [2017FE468-168]

Ask authors/readers for more resources

Background: Circular RNAs (circRNAs) comprise a novel class of noncoding RNAs that play important roles in a variety of diseases. However, the mechanism by which circRNAs regulate the osteogenic differentiation of maxillary sinus membrane stem cells (MSMSCs) remains largely unclear. Methods: Microarray analysis was used to explore the expression profiles of circRNAs during the osteogenic differentiation of normal and BMP2 induced-MSMSCs. CircRNA_33287 was identified by agarose electrophoresis, quantitative real-time PCR (qRT-PCR), and western blotting. The function of circRNA_33287 was assessed by loss- and gain-of-function techniques and Alizarin red staining. Potential miRNA binding sites for circRNA_33287, and the target genes of miR-214-3p, were predicted by using online bioinformatics analysis tools. The relationships among the regulatory roles played by circRNA_33287, miR-214-3p, and Runt-related transcription factor 3 (Runx3), during the osteogenic differentiation of MSMSCs were verified by use of the dual luciferase reporter assay, qRT-PCR, and western blotting techniques, respectively. In addition, the molecular sponge potential of circRNA_33287 for miRNA was assessed via in vivo ectopic bone formation and a histological analysis performed after hematoxylin and eosin staining. Results: Expression of circRNA_33287 was confirmed to be up-regulated during the osteogenic differentiation of MSMSCS. Overexpression and silencing of circRNA_33287 increased and decreased the expression levels of key markers of osteogenesis, respectively, including Runx2, OSX, and ALP. Furthermore, circRNA_33287 acted as a molecular sponge for miR-214-3p, which regulated Runx3 expression by targeting its 3'UTR. Moreover, circRNA_33287 protected Runx3 from miR-214-3p-mediated suppression. In addition, circRNA_33287 was shown to increase ectopic bone formation in vivo and displayed the strongest ability to stimulate bone formation when co-transfected with a miR-214-3p inhibitor. Conclusion: The novel pathway circRNA_33287/miR-214-3p/Runx3 was found to play a role in regulating the osteoblastic differentiation of MSMSCs in the posterior maxilla.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Review Medicine, Research & Experimental

Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells

Weizhuo Lu, Zhiwu Chen, Jiyue Wen

Summary: Ischemic stroke is a common and serious disease, and neuroinflammation plays a crucial role in its progression. Microglia, astrocytes, and infiltrating immune cells are involved in the complicated neuroinflammation cascade, releasing different molecules that affect inflammation. Flavonoids, plant-specific compounds, have shown protective effects against cerebral ischemia injury by modulating the inflammatory responses.

BIOMEDICINE & PHARMACOTHERAPY (2024)