4.5 Article

DDB2 is involved in ubiquitination and degradation of PAQR3 and regulates tumorigenesis of gastric cancer cells

Journal

BIOCHEMICAL JOURNAL
Volume 469, Issue -, Pages 469-480

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20150253

Keywords

cell proliferation; DDB2; gastric cancer; protein degradation; tumour suppressor; ubiquitination

Funding

  1. Ministry of Science and Technology of China [2012CB524900, 2013BAI04B03]
  2. National Natural Science Foundation of China [81130077, 81390350, 81321062]

Ask authors/readers for more resources

DDB2 (damage-specific DNA-binding protein 2) is the product of the xeroderma pigmentosum group E gene which is involved in the initiation of nucleotide excision repair via an ubiquitin ligase complex together with DDB1 and CUL4A (cullin 4A). PAQR3 (progestin and adipoQ receptor family member III) is a newly discovered tumour suppressor that is implicated in the development of many types of human cancers. In the present paper, we report that DDB2 is involved in ubiquitination and degradation of PAQR3. DDB2 is able to interact with PAQR3 in vivo and in vitro. Both overexpression and knockdown experiments reveal that the protein expression level, protein stability and polyubiquitination of PAQR3 are changed by DDB2. Negative regulation of EGF (epidermal growth factor)- and insulin-induced signalling by PAQR3 is also altered by DDB2. At the molecular level, Lys(61) of PAQR3 is targeted by DDB2 for ubiquitination. The cell proliferation rate and migration of gastric cancer cells are inhibited by DDB2 knockdown and such effects are abrogated by PAQR3 knockdown, indicating that the effect of DDB2 on the cancer cells is mediated by PAQR3. Collectively, our studies not only pinpoint that DDB2 is a post-translational regulator of PAQR3, but also indicate that DDB2 may play an active role in tumorigenesis via regulating PAQR3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available