4.7 Article

Whole genome sequencing analysis of small and large colony mutants from the mouse lymphoma assay

Journal

ARCHIVES OF TOXICOLOGY
Volume 92, Issue 12, Pages 3585-3595

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00204-018-2318-5

Keywords

Whole genome sequencing; Mouse lymphoma assay; Chromosome copy number variation; Loss of heterozygosity; DNA damage; Small colony Tk mutants; Large colony Tk mutants

Categories

Funding

  1. U.S. Department of Energy
  2. U.S. Food and Drug Administration (FDA)

Ask authors/readers for more resources

The Thymidine kinase (Tk) gene forward mutation assay, known as the mouse lymphoma assay (MLA), has been widely used for evaluating the genotoxicity of chemical agents. A striking morphological feature of Tk mutant colonies is the bimodal distribution of their sizes, with cells from the large colonies growing at a normal rate and cells from the small colonies growing at a slower rate than normal. To understand the molecular distinction for the different growth rates, we performed whole genome sequencing (WGS) analysis of the large and small colony mutants generated from the MLA. Three large colony and three small colony mutants generated from cells treated with 4-nitroquinoline 1-oxide (4-NQO) or the vehicle control were selected for analysis. The WGS data were analyzed for loss of heterozygosity (LOH) and chromosome copy number along chromosome 11, where the Tk gene is located. Although there were LOH alterations in both large and small colony mutants, copy number changes near Tk locus were found only in small colony mutants produced bythe vehicle control and 4-NQO treatments. The chromosome copy number in the regions near the Tk locus increased from two to three or four in the spontaneous small colony mutants and decreased from two to one in the 4-NQO-induced small colony mutants. These results suggest that chromosome damage was repaired differently in the large and small colony mutants, resulting in significant chromosome alterations in the small colony mutants, but not in the large colony mutants. Thus, chromosome alterations near the Tk locus may play a major role in the inhibition of cell growth in the Tk small colony mutants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available