4.7 Article

Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings

Journal

APPLIED SURFACE SCIENCE
Volume 465, Issue -, Pages 279-287

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2018.09.184

Keywords

Cu2O; Antifouling; Antibacterial mechanism; Morphology; Release rate

Funding

  1. National Key Basic Research Program of China (973) [2014CB643305]
  2. National Natural Science Foundation of China [51603217]
  3. Youth Innovation Promotion Association, CAS [2017338]
  4. Ningbo Municipal Nature Science Foundation [2017A610049]

Ask authors/readers for more resources

Biofouling, a global issue, exerts an adverse impact on ocean shipping, deep-sea exploration, aquaculture and other industries. The addition of Cu2O particles to coatings is the most popular and effective method used for biofouling resistance in the ocean circumstance. Herein, Cu2O particles with three kinds of morphologies, including cube, sphere and cubooctahedron, were fabricated by liquid phase reducing method. Particle size, crystallinity, component, activity in aqueous solution, antibacterial property and copper ion leaching rate were systematically investigated. XRD and XPS jointly reflected that as-prepared Cu2O particles were highly pure and impurity was absent. Among three kinds of Cu2O particles, cubooctahedron Cu2O was the most active, possessed the highest ion leaching rate and exhibited the best antibacterial property. It could be deduced that morphology of Cu2O particles affected its activity in aqueous solution, then impacted release rate and ultimately influenced antibacterial capacity. Morphology and component of bacteria, before and after being exposed to as-synthesized Cu2O-acrylic hybrid coatings were also studied and results proved that copper ion was prone to do a damage to the cell membrane of E.coli rather than B. subtilis because of the difference between cell walls.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available