4.5 Article

MRI, Magnetoencephalography, and Surgical Outcome of Oligodendrocytosis versus Focal Cortical Dysplasia Type I

Journal

AMERICAN JOURNAL OF NEURORADIOLOGY
Volume 39, Issue 12, Pages 2371-2377

Publisher

AMER SOC NEURORADIOLOGY
DOI: 10.3174/ajnr.A5877

Keywords

-

Funding

  1. EpLink, the Epilepsy Research Program of the Ontario Brain Institute
  2. Ontario government

Ask authors/readers for more resources

Oligodendrocytosis includesoligodendroglial hyperplasia, oligodendrogliosis, and oligodendroglial-like cells in the white matter, gray matter, or both from children with medically intractable epilepsy. Focal cortical dysplasia I includes radial and tangential cortical dyslamination. In this study, MRI, magnetoencephalography, type of operation, location, and seizure outcome of oligodendrocytosis, focal cortical dysplasia I, and oligodendrocytosis + focal cortical dysplasia I were compared. There were no significant differences in the type of seizures, focal or nonfocal epileptiform discharges, magnetoencephalography, and MR imaging features among those with oligodendrocytosis, focal cortical dysplasia I, or oligodendrocytosis + focal cortical dysplasia I. The findings suggest that oligodendrocytosis may represent a mild spectrum of malformations of cortical development. BACKGROUND AND PURPOSE: Abnormalities of oligodendrocytes have been reported in surgical specimens of patients with medically intractable epilepsy. The aim of this study was to compare the MR imaging, magnetoencephalography, and surgical outcome of children with oligodendrocytosis relative to focal cortical dysplasia I. MATERIALS AND METHODS: Oligodendrocytosis included oligodendroglial hyperplasia, oligodendrogliosis, and oligodendroglial-like cells in the white matter, gray matter, or both from children with medically intractable epilepsy. Focal cortical dysplasia I included radial and tangential cortical dyslamination. The MR imaging, magnetoencephalography, type of operation, location, and seizure outcome of oligodendrocytosis, focal cortical dysplasia I, and oligodendrocytosis + focal cortical dysplasia I were compared. RESULTS: Eighteen subjects (39.1%) had oligodendrocytosis, 21 (45.7%) had focal cortical dysplasia I, and 7 (15.2%) had oligodendrocytosis + focal cortical dysplasia I. There were no significant differences in the type of seizures, focal or nonfocal epileptiform discharges, magnetoencephalography, and MR imaging features, including high T1 signal in the cortex, high T2/FLAIR signal in the cortex or subcortical white matter, increased cortical thickness, blurring of the gray-white junction, or abnormal sulcation and gyration among those with oligodendrocytosis, focal cortical dysplasia I, or oligodendrocytosis + focal cortical dysplasia I (P > .01). There were no significant differences in the extent of resection (unilobar versus multilobar versus hemispherectomy), location of the operation (temporal versus extratemporal versus both), or seizure-free outcome of oligodendrocytosis, focal cortical dysplasia I, and oligodendrocytosis + focal cortical dysplasia I (P > .05). CONCLUSIONS: Oligodendrocytosis shared MR imaging and magnetoencephalography features with focal cortical dysplasia I, and multilobar resection was frequently required to achieve seizure freedom. In 15% of cases, concurrent oligodendrocytosis and focal cortical dysplasia I were identified. The findings suggest that oligodendrocytosis may represent a mild spectrum of malformations of cortical development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available