4.8 Article

Off-the-Shelf Biomimetic Graphene Oxide-Collagen Hybrid Scaffolds Wrapped with Osteoinductive Extracellular Matrix for the Repair of Cranial Defects in Rats

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 49, Pages 42948-42958

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b11071

Keywords

graphene oxide; extracellular matrix; bone marrow mesenchymal stem cells; bone tissue engineering; rat cranial defect

Funding

  1. National Natural Science Foundation of China [81501688, 81601701, 81701922]
  2. Natural Science Foundation of Hubei Province [2017CFB263]

Ask authors/readers for more resources

Hydrogels such as type I collagen (COL) have been widely studied in bone tissue repair, whereas their weak mechanical strength has limited their clinical application. By adding graphene oxide (GO) nanosheets, researchers have successfully improved the mechanical properties and bio-compatibility of the hydrogels. However, for large bone defects, the osteoinductive and cell adhesion ability of the GO hybrid hydrogels need to be improved. Mesenchymal stem cell (MSC) secreted extracellular matrix (ECM), which is an intricate network, could provide a biomimetic microenvironment and functional molecules that enhance the cell proliferation and survival rate. To synergize the advantages of MSC-ECM with GO-COL hybrid implants, we developed a novel ECM scaffold construction method. First, an osteoinductive extracellular matrix (OiECM) was created by culturing osteodifferentiated bone marrow mesenchymal stem cells (BMSCs) for 21 days. Then, the GO-COL scaffold was fully wrapped with the OiECM to construct the OiECM-GO-COL composite for implantation. The morphology, physical properties, biocompatibility, and osteogenic performance of the OiECM-GO-COL implants were assessed in vitro and in vivo (5 mm rat cranial defect model). Both gene expression and cell level assessments suggested that the BMSCs cultured on OiECM-GO-COL implants had a higher proliferation rate and osteogenic ability compared to the COL or GO-COL groups. In vivo results showed that the OiECM-GO-COL implants achieved better repair effects in a rat critical cranial defect model, whereas bone formation in other groups was limited. This study provides a promising strategy, which greatly improves the osteogenic ability and biocompatibility of the GO hydrogels without the procedure of seeding and culturing MSCs on scaffolds in vitro, demonstrating its potential as an off-the-shelf method for bone tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available