4.6 Article

Scanning electron microscopical observation of an osteoblast/osteoclast co-culture on micropatterned orthopaedic ceramics

Journal

JOURNAL OF TISSUE ENGINEERING
Volume 5, Issue -, Pages -

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/2041731414552114

Keywords

Ceramic; micropattern; osteointegration; co-culture

Funding

  1. EPSRC [EP/G048703/1]
  2. BBSRC [BB/K006908/1] Funding Source: UKRI
  3. EPSRC [EP/K035142/1, EP/G049076/1] Funding Source: UKRI

Ask authors/readers for more resources

In biomaterial engineering, the surface of an implant can influence cell differentiation, adhesion and affinity towards the implant. On contact with an implant, bone marrow-derived mesenchymal stromal cells demonstrate differentiation towards bone forming osteoblasts, which can improve osteointegration. The process of micropatterning has been shown to improve osteointegration in polymers, but there are few reports surrounding ceramics. The purpose of this study was to establish a co-culture of bone marrow-derived mesenchymal stromal cells with osteoclast progenitor cells and to observe the response to micropatterned zirconia toughened alumina ceramics with 30 mu m diameter pits. The aim was to establish whether the pits were specifically bioactive towards osteogenesis or were generally bioactive and would also stimulate osteoclastogenesis that could potentially lead to osteolysis. We demonstrate specific bioactivity of micropatterns towards osteogenesis, with more nodule formation and less osteoclastogenesis compared to planar controls. In addition, we found that that macrophage and osteoclast-like cells did not interact with the pits and formed fewer full-size osteoclast-like cells on the pitted surfaces. This may have a role when designing ceramic orthopaedic implants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available