4.7 Article

Southern Ocean eddy phenomenology

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 120, Issue 11, Pages 7413-7449

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JC011047

Keywords

-

Categories

Funding

  1. NASA Ocean Vector Winds Science Team
  2. Center for Climate Systems Modelling (C2SM) at ETH Zurich
  3. Swiss National Science Foundation [P2EZP2-152133]
  4. Swiss National Science Foundation (SNF) [P2EZP2_152133] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Mesoscale eddies are ubiquitous features in the Southern Ocean, yet their phenomenology is not well quantified. To tackle this task, we use satellite observations of sea level anomalies and sea surface temperature (SST) as well as in situ temperature and salinity measurements from profiling floats. Over the period 1997-2010, we identified over a million mesoscale eddy instances and were able to track about 10(5) of them over 1 month or more. The Antarctic Circumpolar Current (ACC), the boundary current systems, and the regions where they interact are hot spots of eddy presence, representing also the birth places and graveyards of most eddies. These hot spots contrast strongly to areas shallower than about 2000 m, where mesoscale eddies are essentially absent, likely due to topographical steering. Anticyclones tend to dominate the southern subtropical gyres, and cyclones the northern flank of the ACC. Major causes of regional polarity dominance are larger formation numbers and lifespans, with a contribution of differential propagation pathways of long-lived eddies. Areas of dominance of one polarity are generally congruent with the same polarity being longer-lived, bigger, of larger amplitude, and more intense. Eddies extend down to at least 2000 m. In the ACC, eddies show near surface temperature and salinity maxima, whereas eddies in the subtropical areas generally have deeper anomaly maxima, presumably inherited from their origin in the boundary currents. The temperature and salinity signatures of the average eddy suggest that their tracer anomalies are a result of both trapping in the eddy core and stirring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available