4.6 Article

Humanization of a phosphothreonine peptide-specific chicken antibody by combinatorial library optimization of the phosphoepitope-binding motif

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2015.05.086

Keywords

Humanization; Phosphospecific antibody; Phosphothreonine-binding motif; Chicken antibody; Antibody engineering

Funding

  1. Pioneer Research Center Program [2014M3C1A3051470]
  2. Global Frontier Project [2013M3A6A4043874]
  3. Mid-career Researcher Program [2013R1A2A2A01005817]
  4. Priority Research Center Program from the National Research Foundation - Korean government

Ask authors/readers for more resources

Detection of protein phosphorylation at a specific residue has been achieved by using antibodies, which have usually been raised by animal immunization. However, there have been no reports of the humanization of phosphospecific non-human antibodies. Here, we report the humanization of a chicken pT231 antibody specific to a tau protein-derived peptide carrying the phosphorylated threonine at residue 231 (pT231 peptide) as a model for better understanding the phosphoepitope recognition mechanism. In the chicken antibody, the phosphate group of the pT231-peptide antigen is exclusively recognized by complementarity determining region 2 of the heavy chain variable domain (VH-CDR2). Simple grafting of six CDRs of the chicken antibody into a homologous human framework (FR) template resulted in the complete loss of pT231-peptide binding. Using a yeast surface-displayed combinatorial library with permutations of 11 FR residues potentially affecting CDR loop conformations, we identified 5 critical FR residues. The back mutation of these residues to the corresponding chicken residues completely recovered the pT231-peptide binding affinity and specificity of the humanized antibody. Importantly, the back mutation of the FR 76 residue of VH (H76) (Asn to Ser) was critical in preserving the pT231-binding motif conformation via allosteric regulation of ArgH71, which closely interacts with ThrH52 and SerH52a residues on VH-CDR2 to induce the unique phosphate-binding bowl-like conformation. Our humanization approach of CDR grafting plus permutations of FR residues by combinatorial library screening can be applied to other animal antibodies containing unique binding motifs on CDRs specific to posttranslationally modified epitopes. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available