4.1 Article

The calcium sensing receptor: from understanding parathyroid calcium homeostasis to bone metastases

Journal

Publisher

ROYAL COLL SURGEONS ENGLAND
DOI: 10.1308/003588408X286044

Keywords

calcium sensing receptor; primary hyperparathyroidism; cell proliferation; breast cancer; bone metastasis

Categories

Ask authors/readers for more resources

The cloning of the calcium sensing receptor (CaR) confirmed that parathyroid cells monitor extracellular calcium concentration ([Ca2+](ext)) via a receptor-type mechanism. This lead to the hypothesis that abnormalities in the expression and/or function of the CaR could explain the biochemical abnormalities in primary hyperparathyroidism (PHPT). Cultured cells from parathyroid adenomas of patients operated for PHPT were used to monitor real-time changes in intracellular calcium concentration ([Ca2+](i)) as measured by fluorescent microscopy using the Fura-2/AM dye. We found that CaR agonists trigger release of intracellular calcium pools and such responses are amplified by increasing the affinity of IP3, receptors. Using confocal microscopy to monitor membrane trafficking in living parathyroid cells labelled with the fluorescent dye FM143, we found that a decrease in [Ca2+](i) rather than an absolute change in [Ca2+](ext) is the main stimulus for exocytosis from human parathyroid cells. These data suggest that, in PHPT, a defective signalling mechanism from the CaR allows cells from parathyroid adenomas to maintain low [Ca2+](i) with uninhibited PTH secretion in the face of hypercalcaemia. Over longer periods of time, CaR controls parathyroid proliferation via changes in tyrosine phosphorylation. We found that multiple proteins of molecular weight 20-65 kDa are phosphorylated within 10-60 min in response to CaR agonists. Further work demonstrated that high [Ca2+](i) stimulates the expression of bcl-2 oncoprotein in cultured human parathyroid cells and that, in parathyroid adenomas, predominant expression of bcl-2 rather than bax oncoprotein might prevent apoptosis and explain the slow growth rate of these tumours. More recently, it became apparent that CaR stimulates cell proliferation in several cell types not involved in calcium homeostasis. Using archived histological material from 65 patients who died with metastatic breast cancer, we identified CaR expression predominantly in tumours from patients who developed bone rather than visceral metastases (35 of 49 versus 7 of 16; P < 0.01, chi-squared test). These data suggest that CaR expression has the potential to become a new biological marker predicting the risk of bone metastases in patients with breast cancer. A prospective study should investigate if patients with CaR-positive tumours are more likely to develop bone metastases and whether they could benefit more from prophylactic treatment with bisphosphonates or the newly developed CaR antagonists.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available