4.0 Review

Connectome of the fly visual circuitry

Journal

MICROSCOPY
Volume 64, Issue 1, Pages 37-44

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jmicro/dfu102

Keywords

EM reconstruction; synaptic circuits; neural computation; motion detection; insect vision; medulla

Categories

Funding

  1. Howard Hughes Medical Institute

Ask authors/readers for more resources

Recent powerful tools for reconstructing connectomes using electron microscopy (EM) have made outstanding contributions to the field of neuroscience. As a prime example, the detection of visual motion is a classic problem of neural computation, yet our understanding of the exact mechanism has been frustrated by our incomplete knowledge of the relevant neurons and synapses. Recent connectomic studies have successfully identified the concrete neuronal circuit in the fly's visual system that computes the motion signals. This identification was greatly aided by the comprehensiveness of the EM reconstruction. Compared with light microscopy, which gives estimated connections from arbor overlap, EM gives unequivocal connections with precise synaptic counts. This paper reviews the recent study of connectomics in a brain of the fruit fly Drosophila and highlights how connectomes can provide a foundation for understanding the mechanism of neuronal functions by identifying the underlying neural circuits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available