4.6 Article

Extreme moisture transport into the Arctic linked to Rossby wave breaking

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 120, Issue 9, Pages 3774-3788

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014JD022796

Keywords

Arctic water vapor; extreme moisture transport; Rossby wave breaking; ENSO; NAO

Funding

  1. Climate and Large-scale Dynamics Program of the National Science Foundation [1419818]
  2. Directorate For Geosciences
  3. Div Atmospheric & Geospace Sciences [1419818] Funding Source: National Science Foundation

Ask authors/readers for more resources

The transport of moisture into the Arctic is tightly connected to midlatitude dynamics. We show that the bulk of the transient poleward moisture transport across 60 degrees N is driven by extreme transport (fluxes greater than the 90th percentile) events. We demonstrate that these events are closely related to the two types of Rossby wave breaking (RWB)anticyclonic wave breaking (AWB) and cyclonic wave breaking (CWB). Using a RWB tracking algorithm, we determine that RWB can account for approximately 68% of the extreme poleward moisture transport by transients across 60 degrees N in winter and 56% in summer. Additional analysis suggests that the seasonality of such RWB-related moisture transport is determined approximately equally by (1) the magnitude of transport (which is largely a function of the background moisture gradient) and (2) the frequency of RWB occurrence. The seasonality of RWB occurrence is, in turn, tied to the seasonal variation of the latitude of the jet streamsAWB-related (CWB-related) transport occurs more frequently when the jet is shifted poleward (equatorward). The interannual variability of RWB-related transport across 60 degrees N in winter is shown to be strongly influenced by climate variability captured by the El Nino/Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). In the positive (negative) phase of ENSO, AWB transports less (more) moisture through the Bering Strait and CWB transports more (less) through western Canada. In the positive (negative) phase of the NAO, AWB transports more (less) moisture through the Norwegian Sea and CWB transports less (more) along the west coast of Greenland. These results highlight that low-frequency climate variability outside of the polar regions can influence the Arctic water vapor by modulating extreme synoptic transport events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available