4.2 Article

Role of mode of heating on the synthesis of nanocrystalline zinc ferrite

Journal

APPLIED NANOSCIENCE
Volume 5, Issue 6, Pages 711-717

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13204-014-0367-5

Keywords

Nanocrystalline zinc ferrite; Coprecipitation route; Microwave- and conventional-processing techniques; Raman spectra

Ask authors/readers for more resources

In the present work, microwave-assisted coprecipitation route was used for synthesis of nanocrystalline zinc ferrite and results were compared with conventionally prepared zinc ferrite. Synthesis conditions were kept uniform in both cases, except that the mode of heating was changed. The effects of mode of heating on the material properties were studied systematically. Microstructures of both samples were studied by scanning electron microscopy and transmission electron microscopy and the particle size was found to be in the range of 3-4 nm. Particle size distribution in microwave-processed MS-ZnFe2O4 is found to be highly uniform compared to conventionally processed samples (CS-ZnFe2O4). XRD data confirmed the presence of single-phase face-centered cubic structure for both the samples. The XRD data fitted well with Reitveld refinement. The functional groups were analyzed by FT-IR. Local distortions in the structures were studied by FT-Raman spectra of zinc ferrites at room temperature. This study concludes that the microwave-assisted synthesis route reduced the time of reaction by around 23 h and developed uniformly distributed fine-scaled particles. This method has high potential to synthesize other ferrite materials also.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available