4.7 Article

The propagation of compaction bands in porous rocks based on breakage mechanics

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
Volume 118, Issue 5, Pages 2049-2066

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/jgrb.50193

Keywords

compaction band propagation; breakage mechanics; grain crushing; bifurcation; localized failure; viscous regularization

Funding

  1. Australian Research Council [DP110102645, DP120104926]
  2. University of Sydney International

Ask authors/readers for more resources

We analyze the propagation of compaction bands in high porosity sandstones using a constitutive model based on breakage mechanics theory. This analysis follows the work by Das et al. [] on the initiation of compaction bands employing the same theory. In both studies, the theory exploits the links between the stresses and strains, and the micromechanics of grain crushing and pore collapse, giving the derived constitutive models advantages over previous models. In the current post localization analysis, the bifurcation instability of the continuum model is suppressed by the use of a rate-dependent regularization. This allows us to perform a series of finite element analyses of drained triaxial tests on porous sandstone specimens. The obtained numerical results compare well with experimental counterparts, in terms of both the initiation and propagation of compaction bands, besides the macroscopic stress-strain responses. On this basis, a parametric study is carried out to explore the effects of loading rate, degree of structural imperfections, and confining pressure on the propagation of compaction bands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available