4.1 Article

Role of iron, zinc and reduced glutathione in oxidative stress induction by low pH in rat brain synaptosomes

Journal

SPRINGERPLUS
Volume 3, Issue -, Pages -

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1186/2193-1801-3-560

Keywords

Synaptosomes; Acidosis; ischemia; Iron; Zinc; Glutathione

Funding

  1. Committee for Aid and Education in Neurochemistry-International Society for Neurochemistry (CAEN-ISN)
  2. Belorussian Republican Foundation of Basic Investigation [B13-066]

Ask authors/readers for more resources

Brain ischemia leads to a decrease in pH(o). We have shown previously in synaptosomes that the extracellular acidification induces depolarization of mitochondria followed by synthesis of superoxide anions and oxidative stress. Here, we investigated the effects of lowered pH(o) on oxidative stress and membrane potentials in synaptosomes treated by the iron chelator deferoxamine and zinc chelator TPEN. We demonstrated that chelating of metals has no impact on superoxide anion synthesis and intrasynaptosomal mitochondria depolarization. Meanwhile, deferoxamine was able to inhibit oxidative stress induced by low pH(o) and hydrogen peroxide application. Compared to deferoxamine, TPEN was less effective but it decreased the DCF fluorescence induced by pH(o) 6.0 which had no effects in other oxidative stress models. We found that the chelators were able to inhibit slightly plasma membrane depolarization. Synaptosomes preincubation at low pH(o) caused no effects on the reduced glutathione level. Depletion of glutathione by CDNB produced no additional increase in the DCF fluorescence induced by pH(o) 7.0. Our results suggest that free iron is crucial for the development of oxidative stress elicited by acidification in synaptosomes. Chelating of this metal seems to be a promising strategy for protecting the neuronal presynaptic terminals against oxidative stress developed at stroke.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available