4.3 Article

NHERF1/EBP50 Controls Morphogenesis of 3D Colonic Glands by Stabilizing PTEN and Ezrin-Radixin-Moesin Proteins at the Apical Membrane

Journal

NEOPLASIA
Volume 16, Issue 4, Pages 365-+

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neo.2014.04.004

Keywords

-

Categories

Funding

  1. American Recovery and Reinvestment Act (ARRA) supplement [NCI-CA107201]
  2. GS Hogan Gastrointestinal Research Fund

Ask authors/readers for more resources

Na+/H+ exchanger 3 regulating factor 1/ezrin-radixin-moesin (ERM)-binding phosphoprotein 50 (NHERF1/EBP50), an adaptor molecule that interacts with the ERM-neurofibromatosis type 2 family of cytoskeletal proteins through its ERM-binding region and with phosphatase and tensin homolog (PTEN) and beta-catenin through its PDZ domains, has been recently implicated in the progression of various human malignancies, including colorectal cancer (CRC). We report here that NHERF1 controls gland morphogenesis, as demonstrated in three-dimensional (3D) human intestinal glands developing from a single nonpolarized cell. Starting from the early two-cell developmental stage, NHERF1 concentrates at the cellular interface in a central membrane disc that marks the apical pole delimiting the forming lumen. NHERF1 depletion leads to severe disruption of the apical-basal polarity, with formation of enlarged and distorted cell spheroids devoid of a central lumen. This characteristic and the increased number of mitoses in NHERF1depleted spheroids, including multipolar ones, mimic high-grade dysplasia lesions observed in CRC progression. NHERF1 ERM-binding or PDZ-domain mutants fail to localize apically and impair gland formation most likely by outcompeting endogenous ligands, with the latter mutant completely aborting gland development. Examination of NHERF1 ligands showed that even if both ezrin andmoesin colocalized with NHERF1at the apicalmembrane, moesin but not ezrin depletion disrupted morphogenesis similarly to NHERF1. NHERF1 depletion resulted also in membrane displacement of PTEN and nuclear translocation of beta-catenin, events contributing to polarity loss and increased proliferation. These findings reveal an essential role of NHERF1 in epithelialmorphogenesis and polarity and validate this 3D system for modeling the molecular changes observed in CRC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available